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Abstract—Videos capture events that typically contain multiple sequen-
tial, and simultaneous, actions even in the span of only a few seconds.
However, most large-scale datasets built to train models for action
recognition in video only provide a single label per video. Consequently,
models can be incorrectly penalized for classifying actions that exist
in the videos but are not explicitly labeled and do not learn the full
spectrum of information present in each video in training. Towards this
goal, we present the Multi-Moments in Time dataset (M-MiT) which
includes over two million action labels for over one million three second
videos. This multi-label dataset introduces novel challenges on how to
train and analyze models for multi-action detection. Here, we present
baseline results for multi-action recognition using loss functions adapted
for long tail multi-label learning, provide improved methods for visualizing
and interpreting models trained for multi-label action detection and show
the strength of transferring models trained on M-MiT to smaller datasets.

1 INTRODUCTION

In this paper we present the Multi-Moments in Time dataset
(M-MiT). This is a multi-label extension to the Moments in
Time dataset (MiT) [27] which includes one million 3-second
videos each with a human annotated action label.

Videos by their nature are dynamic. In contrast to images,
events can evolve over time and a single action label for an
event may not fully capture the set of actions being depicted.
For example, a short video of a person raising their hand and
snapping their fingers before laughing has multiple actions
(e.g. raising, snapping, laughing) as part of the main activity.
Single label action datasets for video so do not provide
annotations on this full set of information and instead label
a single action in each video. This leads to information loss
in training, as only partial labels are provided per video
and results in an incomplete/incorrect evaluation of trained
models. For example, an action model may return laughing for
the video previously described but the single label provided
by the dataset for the video may be snapping. In this case
evaluation will flag this as an incorrect prediction when it is
actually correctly identifying a present action. This problem
is exacerbated when we consider simultaneous actions that
may take place in other parts of the video (e.g. a person

(a) Multi-Moments in Time 2 million action labels for 1
million 3 second videos

(b) Multi-Regions Localizing multiple visual regions
involved in recognizing simultaneous actions, like running
and bicycling

(c) Action Regions Spatial localization of actions in single
frames for network interpretation

(d) Action Concepts Interpretable action features learned
by a trained model (i.e. jogging)

coughing in the background). See Section 6.3.2 for empirical
validation of these claims.

Several large-scale video datasets provide a large diver-
sity and coverage in terms of the categories of activities
and exemplars they capture [20], [17], [27]. However, these
labeled datasets only provide a single annotated label for
each video and this label may not cover the rich spectrum
of events occurring in the video. For example a video of an
audience applauding may also include a person on a stage
performing, playing music, singing, dancing, etc. There are a
number of existing multi-label datasets for action detection
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in video [36], [18], [29], [11], however these datasets either
do not share the scale in diversity of content and the number
of annotated videos of the large single label datasets, like
Kinetics [20] or Moments in Time [27], or suffer from low
specificity in their label set, as in Youtube-8M [1] which
contains a large set of videos with multiple weak labels
sourced from YouTube topic tags. A likely cause is the
increased cost of collecting multiple labels for for a large
set of videos compared to single label annotations. However,
these large-scale datasets have been shown to be important
for training models that can capture robust representations
that can be used to transfer to smaller datasets downstream
[20], [27]. With this in mind we have decided to build a large
multi-label dataset that captures the scale and diversity of
large single label video datasets. While the visual, audio and
semantic complexity of each video is challenging to fully
annotate, we took a step toward this goal by extending the
Moments in Time dataset, to contain multiple action labels
describing one or more events occurring in each clip.

Building a multi-label dataset introduces new challenges
in how to train and analyze models for multi-label action
detection, including loss function to optimize model learning
such as to take advantage of distinct labels for the same
visual inputs. For model’s representation analysis, recently
introduced methods such as Class Activation Mapping
(CAM) [41] and Network Dissection (NetDissect) [3] focused
on single label interpretation (CAM) or did not provide
methods for analyzing learned action concepts (NetDissect).
We address these limitations by extending both of these
approaches to multi-action models (see Figure 1).

In Section 5.1 we present a multi-label extension to Class
Activation Mapping that identifies the important image
regions for predicting multiple simultaneous actions in a
given scene. In Section 5.2 we outline our approach for
adding action concepts to the NetDissect framework for
interpreting internal units of a deep network. We additionally
examine different multi-label loss functions applied to our
dataset in Section 6. This includes a modification to the
recently introduced LSEP loss function [22] to support
weighted learning for imbalanced datasets to handle the
natural long tail distribution of actions in video. In the next
section, we describe related work in the area followed by a
description of the Multi-Moments in Time dataset and our
annotation procedure. Overall the key contributions of this
paper include:

• Multi-Moments in Time (M-MiT): A large-scale
multi-label action dataset for video understanding
with over two million action labels 1.

• wLSEP: A novel multi-label loss function that sup-
ports learning from an imbalanced class distribution
where some classes have more examples than others.

• mCAM: Multi-Label Class Activation Mapping for
identifying multiple important visual features for
model predictions.

• Action Network Dissection: We present a single
frame dataset (Action Boxes) with bounding boxes on
visible actions that we use for incorporating action
concepts into Network Dissection [3] to identify key
interpretable features learned by action models.

1. The data is available on our site, http://moments.csail.mit.edu.

2 RELATED WORK

2.1 Action Datasets for Video Understanding
Video understanding has recently seen fast progress partly
due to the availability of large scale video datasets for
action recognition such as Kinetics [20], Moments in Time
[27] and ActivityNet [8]. These large datasets are used to
pretrain large video models that can be fine-tuned on smaller
action recognition datasets such as UCF101 [31], HMDB [21],
THUMOS [19], and “something something” [17]. Fine-tuning
in this way allows the models to learn robust representations
from the large variety of videos in the large datasets and
transfer their features to the smaller sets.

Each of these datasets contains a single action label for
each video clip provided. This has been shown to be a
limitation as actions tend to be intricately connected [36]
and a single label on a video often misses background
events and richer descriptions of events. For example, a
video of a person swimming in a pool may be labeled with
the action "swimming". This is correct, but consider that
they are participating in a swim meet and are racing other
swimmers. Adding the labels "competing" and "racing" may
help capture this information. Additionally, there may be a
person "running" along side the pool in the background. Our
proposed dataset aims to address this problem and provide
multiple labels for each video. There have been a number
of multi-label video datasets introduced for action detection.
However, they either tend to be much smaller in scale
than the large single-label datasets, such as MultiThumos
[36], AVA [18] and Charades [29], or constrained to specific
domains, such as EPIC-KITCHENS [11]. Our proposed Multi-
Moments in Time dataset is large-scale, diverse and includes
manually annotated action labels for each video.

2.2 Models for Video Understanding
To take advantage of the different datasets described in the
previous section, many different models have been proposed.
A popular architecture is the two-stream CNNs [30] which
separately processes optical flow and RGB frames. 3D CNNs
[32] use a 3-dimensional kernel to learn temporal information
directly from the frame sequence of a video and I3D models
[9] combine 3D CNNs with optical flow to form a two-
stream 3D network “inflated” from 2D filters pre-trained on
ImageNet [12]. More recently a temporal shift module (TSM)
has been used to integrate temporal information into 2D
models by shifting frame representations across the temporal
dimension [23]. We compare results using both I3D and TSM
baseline models on our proposed dataset in Section 6.

2.3 Multi-Label Optimization
Multi-label optimization is a common problem in object
dectection where multiple objects may be present in a
single image. Given the variety of appearances of objects
within a scene, it is challenging for global CNN features
to correctly predict multiple labels. Approaches instead use
object proposals [16], [35] or learn spatial co-occurrences of
labels using LSTMs [33], [37]. Convolutional neural networks
(CNN) have also been applied on raw images of multiple
objects to learn image-level deep visual representations for
multi-label classification [33].
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To improve performance on multi-label detection tasks,
different loss functions have been proposed. A common
approach is binary cross entropy which optimizes each
class label individually. However, when treating each class
individually, it is also difficult to learn the correlations
between different classes [13], [38], [22]. Additionally, this
approach may incorrectly penalize some examples which
do not have full label coverage as it assumes the absence
of a label is a negative label. Another approach is pair-
wise ranking [34] which encourages the model to generally
assign higher ranks to positive labels. This method has
the added benefit of reducing the strength of a models’
mistake as incorrect predictions tend to still include highly
ranked positive labels. WARP [16], [34] expands on this by
including a monotonically increasing weighting function
that increases the error for positive labels that are poorly
ranked, thus prioritizing them in learning. BP-MLL [38] is
another approach that provides a smooth calculation of the
ranking error but suffers from exceedingly large values when
the positive classes are poorly ranked and the vocabulary
size is large. LSEP [22] is a variation of the BP-MLL loss
function which addresses it’s numerical stability issues but
can become dominated by poorly ranked positive classes
and does not allow for weighting the loss accross classes
in imbalanced datasets. We propose a modification of the
LSEP loss function to reduce the effect of these poorly ranked
positive classes while integrating a class weighting term that
aims to balance learning in datasets with imbalanced label
distributions which are common in multi-label problems.

2.4 Model Interpretation

Recent work in network interpretation performs a weighted
inflation of the feature maps in the final convolutional layer
of a CNN to visualize the important visual regions the
network is using to make a prediction [40]. These class
activation maps (CAMs) can be thought of as a method
for visualizing the learned attention model of the network
and have been shown to localize actions occurring in videos
[27]. Additionally, network interpretation has been extended
to not just visualize important visual regions for a prediction
but to also identify the different concepts a network has
learned [4], [39]. This is important for understanding the
representation of the network and diagnosing class biases
that the network is learning. However, the previous work in
network dissection (NetDissect) does not include action con-
cepts in its interpretation instead relying on objects, scenes,
object parts, textures and materials. In this paper we extend
the dataset used (Broden dataset) for this interpretation to
include actions as well so that we can better interpret action
recognition models. We also extend class activation mapping
to visualize specific regions important to different actions in
images with multiple detected actions.

3 BUILDING A MULTI-ACTION DATASET

In this section we describe our approach to building and
annotating our Multi-Moments in Time dataset (M-MiT) and
present summary statistics on our dataset characteristics.

3.1 Annotation

We began by annotating our added action labels using the
same process as the Moments in Time dataset. The annotation
phase used Amazon Mechanical Turk for crowd sourcing
where each worker is presented with a video-verb pair and
asked to respond Yes or No if the action is either seen or
heard in the video. We additionally embed ground truth
video-action pairs into every set that have been manually
verified by our team to either be a positive pair (the action
is in the video) or a negative pair (the action is not in the
video). We randomly replace 10% of the questions in every
annotation set with these ground truth pairs and use them
to evaluate workers. If a worker gets more than one of these
questions wrong then we do not let them submit the set
and if a worker repeatedly submits sets with an incorrect
ground truth response then we flag the worker and prevent
them from completing future jobs. Each action-video pair
is annotated at least three times for the training set and at
least 5 times for the validation set. This ensures high-quality
annotations are collected efficiently. We refer the reader to
the Moments in Time paper for more details [27].

3.1.1 Generating Action Candidates

A difficulty of the annotation task is to choose candidate
actions that are likely to return positive responses (i.e. actions
that occur in the videos). We generated candidate actions for
each video using few different techniques.
Approach 1: First, we began by selecting candidates using
WordNet [26] relationships where we iteratively picked ac-
tions for annotation that were closely linked in the WordNet
semantic graph to the existing action labels for each video.
We constrained ourselves to the original Moments in Time
vocabulary of 339 actions in order to simplify this process
and stopped our candidate selection when the harvest
rate (positive worker response rate) dropped below 20%.
For example, if we have a video with the action running,
the WordNet graph structure shows a short semantic path
(distance between word nodes in the graph) to the action
exercising and begin annotating all videos that have the action
running with the action exercising. We iteratively increase the
node distance used to find related actions in the graph until
the harvest drops below the 20%. It is important to note that
the hierarchy in action relationships are less well defined
than that of objects. For example, not every video of eating
is defined by the action dining. Similarly there are videos in
the dataset of animals running that are chasing each other
which do not relate to exercising in the same way a video
of a person jogging does. It is important to note that these
approaches are to generate action candidates that we verify
through multiple rounds of human annotation. In this way
we are able to verify whether a video of a person running is
in fact jogging as opposed to sprinting and/or chasing.
Approach 2: Similar to the WordNet approach, we use
Word2Vec [25] similarity scores to select action candidates
based on the existing action labels for a video. Word2Vec
allows us to generate candidates for actions that describe
commonly co-occurring events such as stirring and boiling or
running and jumping. Similarly, this approach helps to gen-
erate opposite, but commonly co-ocurring action pairs such
as opening and closing or throwing and catching. A limitation
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running competing

jumping

cheering shouting

applauding

falling rolling

clapping

Fig. 2: An example of the path of generating new candidate
verbs from previously annotated classes.

of this approach is that it is based on NLP embeddings and
may not be fully reflective of action relationships in video.
Approach 3: The final approach we use for candidate
selection is to run a trained model over the videos and select
the top-1 predictions for each video that are not currently
annotated. The model used for this task was trained on
the single label dataset and is provided by the authors
of the original work [27]. We restricted the actions to the
top-1 predictions as taking a larger range of predictions
quickly dropped the harvest rate which limited our ability
to scale. This approach can capture events that may be
seemingly unrelated but still co-occurring in a video such
as a child jumping in a doorway while an adult is cooking
in a kitchen. This does introduce some model bias into the
candidate generation process but when combined with the
other approaches we consider it acceptable to reach a stronger
coverage of the events in our videos.

For each of the above approaches we regenerate new
candidates as new labels are verified through annotation.
Figure 2 outlines the candidate generation path of a video
that was originally only labeled with the action running. In
this case we first generate and annotate the action candidates
jumping, competing and cheering which then eventually lead
to subsequent annotated actions such as clapping and rolling
such that we are able to provide a much more thorough
description of the actions taking place in the video than
simply running. Also note that cheering, applauding, clapping
and shouting are auditory actions that may not be visible in
the video itself but instead heard.

These methods of candidate generation allow us to
efficiently annotate multiple actions in each video, but it
does result in videos where we do not annotate every present
action. We consider this an acceptable trade-off for the ability
to scale to such a large set of labels and we ensure that in
training models we do not directly penalize predictions for
actions that are not labeled (see Section 4).

3.2 Dataset Statistics

There are 802,244 video-label pairs in the training set, and
33,900 in the validation set of the Moments in Time Dataset.
We increased this dataset to 2.01 million labels for 1.02 million
videos by adding new videos, generating and annotating
action candidates as described in the previous section and
adding new action classes to the dataset.

Our Multi-Moments in Time dataset includes 292 annotated
action classes where new actions have been added to the
Moments in Time vocabulary (e.g. skateboarding), ambigu-
ous/noisy actions were removed (e.g. working) and similar
actions have been merged into a single class (e.g. rising and

Fig. 3: The label distribution of our proposed Multi-Moments in
Time dataset compared to the Moments in Time dataset

Combined

stroking/petting
smiling/grinning
stacking/piling
breaking/destroying
filming/photographing
cleaning/washing
constructing/assembling
ascending/rising
combusting/burning
descending/lowering

teaching/instructing
rotating/spinning
shoveling/digging
eating/feeding
tearing/ripping
smelling/sniffing
hitting/colliding
laughing/giggling
buying/selling/shopping
snuggling/cuddling/hugging

Added

paddling
weightlifting
parading
squeezing
sculpting
punting
texting

waxing
scooping
erasing
laying
bandaging
shivering
dialing

inserting
unplugging
rubbing
massaging
kayaking
sleeping
flossing

ironing
ice+skating
approaching
snowboarding
skateboarding
smashing
gasping

Removed

coaching
boarding
flicking
stopping
working
asking
starting

serving
sketching
paying
putting
talking
entering
placing

exiting
blocking
cramming
tickling
joining
raising
watering

imitating
drenching
bouncing
guarding
building
leaning
playing

Fig. 4: Lists of vocabulary differences in M-MiT compared to
MiT. We combined similar classes, removed ambiguous/noisy
classes and added some new classes found during annotation.

ascending -> ascending/rising). We additionally added novel
actions not found in the original Moments in Time (e.g.
unplugging) and removed actions that we deemed either too
vague or noisy based on a random sample of 500 videos per
class (e.g. working). Figure 4 shows the changes made to the
class vocabulary from MiT.

This new vocabulary should cover an increased breadth
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of events while improving the boundary between different
classes. Using this new action set we were able to increase
the training set to include over 2 million labels where 553,535
videos are annotated with more than one label and 257,491
videos are annotated with three or more labels. In addition,
we have created new validation and test sets each consisting
of 10K videos with over 30K labels each. Figure 3 shows
a comparison of the distribution of our proposed M-MiT
dataset to single label MiT dataset. The classes in the training
set have an average of 6,432 example videos and a median
of 5,478 videos while the classes in the validation set have
an average of 96 example videos and a median of 31 videos.

4 MULTI-LABEL LOSS FUNCTIONS

In this section we present a set of multi-label loss functions
that we use to train models on our multi-action dataset. For
each loss we normalize by the number of labels in each
data example to handle the variability in the number of
labels per video and incorporate a class weighting term wi

that helps to balance learning when the training set has an
imbalanced number of examples per label. This imbalance is
common for action datasets as action labels tend to follow a
long tail distribution in practice. Additionally, in prior work
sampling was used to address the quadratic complexity of
the different loss functions [22]. However we have found that
parallelizing the loss computation through matrix operations
eliminates the need for sampling. We compare the results of
each approach in Section 6.

4.1 BCE
A common approach to multi-label optimization is to op-
timize for binary cross entropy and treat each label as an
independent classifier. Given the output of a model, xi for
class i and an indicator of whether this class is positive, yi,

LBCE = −wi[yi log xi + (1− yi) log(1− xi)], (1)

where wi is a weight balancing term that scales the strength
of the loss applied to class i to improve optimization for
underrepresented classes in imbalanced datasets.

However, this has been shown to not consider correlations
between different classes [13], [38], [22] and makes the
assumption that cases where a class does not have a positive
label are negative examples. While we have verified all
positive labels in the proposed dataset, we do not assume
that an unlabeled class is guaranteed to not be present.

4.2 WARP
Pair-wise ranking presents another approach to multi-label
optimization stemming from the motivation that while it
is important to correctly classify a positive label, it is also
important to reduce the strength of a mistake by encouraging
the model to assign higher ranks to positive labels [34]. The
WARP loss function [16], [34] proposes a weighted pair-
wise ranking function that prioritizes poorly ranked positive
classes via an additional monotonically increasing weighting
functionW(xi),

LWARP =
1

|Y|
∑
i∈Y

wiW(R(xi))
∑
j /∈Y

max(0, 1 + xj − xi),

(2)

where Y represents the set of positively labeled classes.
The rank of a predicted class, R(x), is used to increase

the error penalization for lower ranked classes. In practice

we setW(r) =
r∑

k=1

1

k
.

4.3 LSEP

The recently proposed multi-label ranking function LSEP [22]
takes the log of the BP-MLL function [38], with the addition
of a single bias term, to increase the numerical stability,

LLSEP = log
(
1 +

∑
i∈Y

∑
j /∈Y

exj−xi
)
. (3)

This prioritizes positive classes that are poorly ranked
without the need of an additional weighting function as
in WARP. However, poorly ranked classes can dominate the
loss and the function does not allow for a weighting term to
be included to improve optimization in imbalanced datasets.

wLSEP

We propose modifying the LSEP loss to add a weight
balancing term to aid optimization in our imbalanced dataset.
This is not straight forward as the gradient computation for
each class is non-separable from other classes. We address
this by modifying the LSEP loss to apply individually to
each class with a positive label allowing us to simply add a
weight term, wi, to the function,

LwLSEP =
1

|Y|
∑
i∈Y

wi log
(
1 +

∑
j /∈Y

exj−xi
)
. (4)

This looses the prioritization of low ranked positive classes
in the original loss function by summing the softmax of the
ranking error (xj − xi) for each positive label i, however
it avoids the problem of taking a global softmax over all
positive labels which prevents the loss from being dominated
by poorly ranked positive labels.

5 ANALYZING MULTI-LABEL MODELS

5.1 Multi-Label Class Activation Mapping

Here we extend the class activation mapping (CAM) [40]
technique to multi-label tasks. The simplest approach is
to inflate the CAM for each predicted action, taking the
maximum value of each map so that we can visualize the
discriminative features used for our multi-label prediction.
However, in practice, the combined CAM filters cover a large
area of the input image making it difficult to gain a useful
understanding of the models’ decisions. CAM is very useful
for identifying the key visual features that contribute to a
model’s prediction. In our multi-label setting we want to
identify the unique features that are contributing to each
prediction. This is clear for very different actions such as
jumping and swimming but the distinct features used to detect
dining and eating may be more ambiguous. We care about
separating these regions to better understand our model and
how it is making it’s decisions. This can help us identify any
biases learned by the model and may help us understand
small differences between seemingly similar actions.
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Fig. 5: Region Separation: Example showing single class CAM images and the separation of relevant
features in a multi-class CAM image. The red regions specify important areas of the image used by the
model to infer the detected action.

Fig. 6: Multi-CAM Examples: Multi-class CAM images for a variety of scenes with simultaneous actions.
Action labels are placed near the important image regions used by the model for identifying each specific
action. This area is signified by the red overlay with blue edges separating image regions distinct to each
detected action showing that our model is able to localize multiple actions present in each scene despite
not being trained for localization.

To address this issue, before we take the maximum value
of each actions CAM, we first compare the different CAM
filters for each of our predicted classes and when two filters
with a cosine distance greater than 1−4 have similar values
at the same pixel locations we set the values of the pixels
for both filters to zero. This eliminates the overlapping area
and, after performing maximum pooling over the altered
CAM filters, creates a boundary between the distinct features
associated with each predicted action. Only altering filters
with a cosine distance greater than some threshold, in this
case 1−4, ensures that detections that use the same regions
do not have their CAMs erased. In practice we found that
this value strikes a strong balance in generating distinct
visualizations of regions used by the model for multiple
detections while merging highly similar regions used by the
model such as emptying and pouring in the image of wine
being poured into a glass in Figure 6. If a strict comparison
of features used between two detected actions in an image is
desired then this threshold should be set to zero. To improve
the visualizations we also apply Gaussian smoothing with a
5x5 kernel to reduce the sharpness of some of the boundary
edges. We show the results of this method for analyzing
multi-label predictions in Section 7.1.

5.2 Identifying Learned Action Features
To better analyze our learned action models we extend the
set of concepts used by NetDissect [4], [39] to include actions.

NetDissect uses the Broden dataset, an image segmentation
dataset consisting of pixel-level annotations of objects, scenes,
parts, materials and colors. For each image input into a model
the labeled segmentations are compared to the different
activation regions in internal feature maps of the model.
For example, when the activation regions for a feature map
share a strong correlation, quantified using IoU, with the
segmented regions of a specific object class in a set of
images then the feature is interpreted to be correlated to that
object. We refer to the NetDissect paper for more information.
Here, we extend the Broden dataset to include images with
segmented action regions so that we can correlate features
with action classes.

5.2.1 Annotation

As with annotating the action labels in the videos, we collect
bounding box annotations via Amazon Mechanical Turk
(AMT). We begin by selecting a single frame from the
center of 500 randomly selected videos from each of the
action classes in Moments in Time [27], Kinetics [20] and
the Something-Something [17] datasets. We then present a
binary annotation task to the workers on AMT asking if
an action from the source video’s label set is visible in the
frame shown. This binary interface is very similar to that
used for collecting the action labels for the Moments in Time
dataset [27] with the main difference being the use of images
rather than video. We run this task for at least 2 rounds of
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Model Loss Top-1 Top-5 Micro Macro
mAP mAP

I3D

BCE 52.9 77.8 55.4 37.8
WARP 51.9 79.2 56.5 32.7
LSEP 52.7 78.8 56.1 31.7

wLSEP 58.5 81.4 61.7 39.4

TSM

BCE 56.9 80.1 58.7 37.8
WARP 55.8 81.0 60.0 33.4
LSEP 55.2 81.4 59.8 27.6

wLSEP 58.1 81.6 62.4 35.4

Audio

BCE 6.8 19.3 6.9 3.1
WARP 6.3 18.6 6.6 2.8
LSEP 5.3 16.1 6.0 2.6

wLSEP 6.9 20.9 6.9 3.2
Fusion wLSEP 59.3 82.8 61.8 41.1

TABLE 1: Validation Results: Performance of the baseline
models with different loss functions on the multi-label validation
set. We show Top1, Top5 and both micro and macro mAP.

annotation to verify that the action is visible in each frame.
We then take the set of verified action-frame pairs and pass
them to a separate annotation interface on AMT that asks the
workers to select the regions most important in the image
for identifying the action. Multiple regions can be selected
for an image, as in the jogging example in Figure 8, and the
workers are allowed to skip an image if there are no useful
regions for detecting the action (i.e. the action is not visible
in the image).

We run this region selection task through multiple rounds
and only consider overlapping regions from the different
rounds as most important for detecting the actions. After this
stage the regions selected are cropped from the original
images and passed through the binary annotation task
previously described for a final verification that the actions
are present and recognizable in the selected regions. After our
complete annotation process our total set of verified images
with segmented action regions consists of 67,468 images from
549 different action classes. Figure 8 displays some examples
of the selected regions collected through this process.

5.2.2 Action Interpretation

To integrate our new action region dataset into the Network
Dissection framework we first consider each selected region
to be a mask on the segmented area of the image relating to
the action. This is similar to part, material and object masks
used for other segmentation datasets [42], [10], [28], [6]. With
the data formatted in this manner we extend the Broden
dataset to include our action segmentations and extract the
set of learned action concepts detected via NetDissect. This
process allows us to identify not just object, scene, texture and
color concepts learned by our models, but action concepts
as well. In Section 7.2 we show some of the key results from
interpreting action networks in this way.

6 BASELINE RESULTS

We trained two architectures on our dataset, an inflated 3D
ResNet-50 (I3D) [9] for the visual modality and a SoundNet
network [2] for learning audio features and compare across
different multi-label loss functions.

Training Evaluation Top-1 Top-5 Micro Macro
Dataset Dataset mAP mAP

MiT MiT-S 23.0 53.0 36.7 18.9
MiT M-MiT-S 40.0 68.5 42.1 24.5

M-MiT M-MiT-S 45.0 79.1 54.5 32.7

TABLE 2: MiT vs M-MiT Model Validation Results: Perfor-
mance of models trained on MiT and M-MiT on a subset of the
M-MiT validation set containing only classes shared between
MiT and M-MiT. We evaluate with both a single label version
(MiT-S) and a multi-label version (M-MiT-S). We show Top1,
Top5 and both micro and macro mAP. We see that multiple labels
improves our evaluation of the MiT model while the M-MiT
model achieves the best results.

Dataset Loss Top-1 Top-5 Micro Macro
mAP mAP

MS-COCO

BCE 90.3 98.6 82.6 63.6
WARP 92.0 98.8 83.7 60.9
LSEP 94.0 98.8 85.4 61.0

wLSEP 94.3 98.9 86.3 64.5

VOC

BCE 91.7 97.9 91.6 83.7
WARP 93.2 99.4 92.9 85.1
LSEP 92.8 99.2 92.6 85.2

wLSEP 93.8 99.5 93.4 87.2

AVA

BCE 58.3 92.1 65.5 9.3
WARP 47.6 85.1 54.4 11.2
LSEP 71.0 95.7 71.2 10.9

wLSEP 71.2 96.0 72.3 12.7

MultiThumos

BCE 63.4 91.1 65.5 58.9
WARP 75.8 91.8 77.5 63.7
LSEP 75.1 91.7 77.2 65.5

wLSEP 75.9 92.0 77.6 68.0

TABLE 3: Loss function comparison: We validate our proposed
wLSEP loss function on four different multi-label datasets. A
ResNet-50 model is trained for MS-COCO and VOC while a
ResNet-50 I3D model is trained for AVA and MultiThumos

6.1 Models

Inflated 3D Convolutional Networks (I3D)

I3D networks offer improved weight initialization by simply
inflating the convolutional and pooling kernels of pretrained
2D networks [9]. This is done by initializing the inflated 3D
kernel with pretrained weights from 2D models by repeating
the parameters from the 2D kernel over the temporal
dimension. This greatly improves learning efficiency and
performance since 3D models contain a large number of
parameters and are difficult to train from scratch. For our
experiments we use an inflated 3D ResNet-50 pretrained on
ImageNet with 16 frames as input.

Temporal Shift Model (TSM)

We additionally compare results using a ResNet-50 temporal
shift module pretrained on ImageNet. This model integrates
temporal information into the 2D architecture by shifting
frame representations across the temporal dimension [23]. In
our experiments we used 8 frames as input into the model.

SoundNet Network (Audio)

In MiT, action classes are labeled for both visual and auditory
information. Therefore we feel it would be incomplete to
evaluate visual models and not include a model trained
on audio. We finetune a SoundNet network [2] which was
pretrained on unlabeled videos from Flickr.
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Spatio-temporal-Auditory Fusion
We fuse the predictions from the audio and visual modalities
by concatenating the spatio-temporal features of the I3D
network with the auditory features from SoundNet and train
a single linear layer to rank the detected action classes using
the loss functions described in the following section.

6.2 Performance Metrics
Accuracy
We report both the top-1 and top-5 classification accuracy for
each of our models in order to be consistent with the results
reported from the original Moments in Time paper [27]. Top-1
accuracy indicates the percentage of testing videos where the
top predicted class is a positive label for the video. Similarly,
top-5 accuracy indicates the percentage of the testing videos
where any of the top predicted 5 classes for a video is a
positive label.

Mean Average Precision (mAP)
We use mAP as our main evaluation metric as it captures
errors in the ranking of relevant actions for a video. For each
positive label, mAP computes the proportion of relevant
labels ranked before it and averages over all of the labels.

In order to properly evaluate our models we report both
the micro and the macro mAP. The micro mAP is the mean
average precision over all videos and the macro mAP is the
average of the mAP for each class. In the case of imbalanced
datasets the micro mAP depicts the full performance of the
model on the dataset while the macro mAP displays the
models class-wise consistency. These numbers can differ
greatly as a high mAP in a highly represented class and a
low mAP in all other classes can lead to a high micro mAP
and a low macro mAP.

6.3 Loss Function Comparison
6.3.1 Results on M-MiT
Table 1 displays results of the models trained using different
loss functions on the proposed Multi-Moments in Time
dataset. We can see that the proposed wLSEP loss function
significantly outperforms the other approaches at optimiza-
tion. The combination of stable pair-wise ranking with class
balancing is very effective in training our multi-label network.
Interestingly, for the TSM model BCE produced a slightly
better macro mAP even though wLSEP performed better in
terms of micro mAP, top-1 and top-5 accuracy. BCE is well
suited for weighted learning, as shown in Equation 1, which
is likely aiding in the balanced class prediction performance
here. We want to point out that wLSEP does beat it in all of
the other metrics and achieves a superior macro mAP score
with the I3D model (39.4 compared to 37.8 for BCE in both
I3D and TSM). This is consistent with the results from other
datasets as shown in the following section.

For our audio network the performance separation was
much smaller but still results in our proposed wLSEP loss
function achieving the best results. For audio we only train
and evaluate our models on videos containing audio streams.
Fusing the audio and I3D networks via an SVM results in
slightly higher top-1 and top-5 accuracies than using I3D
alone but does not significantly improve the performance.

We choose I3D here due to it having, on average, better
performance across the metrics. This small improvement in
the fusion results is likely due to the small number of videos
in the validation set that contain audio streams as well as the
dominance of visual-based labels in the dataset.

6.3.2 Comparing MiT and M-MiT Models
To validate the claims that adding multiple labels improves
model evaluation we compared the results of a model trained
on MiT using an evaluation set of videos with their original
single label, from MiT, to results using the same set of videos
and model but with additional annotated labels, from M-
MiT, added to each video (Table 2). For a fair comparison
we only consider labels that are shared between MiT and
M-MiT resulting in a set of 8,761 videos that we use for
both single and multi-label evaluation in the table. These
results show that adding additional labels to the videos
improves our ability to properly evaluate the model. When
only considering a single label for each video, the evaluation
points to the model performing much worse than when we
add in the additional labels from M-MiT. This is due to not
having the full set of labels in the MiT evaluation set. We
additionally present results comparing the our best M-MiT
on the same set of videos and labels showing that adding
additional labels in training significantly improves model
results. Both models in the table are I3D Resnet50 networks.

6.3.3 Results on Other Datasets
To further validate our wLSEP loss function, Table 3 shows
a comparison between wLSEP, LSEP, WARP and BCE on
four different multi-label datasets. This includes two image
datasets for object detection (Pascal VOC [15] and MS-COCO
[24]) as well as two video datasets for action detection (AVA
[18] and MultiThumos [36]). For the image datasets we
trained a ResNet-50 and we used a ResNet-50 I3D model
with 16 frames for the video datasets. We can see in the table
that the proposed wLSEP loss function consistently produces
the strongest results in each dataset.

6.4 Transfer experiments
To evaluate the strength of the features learned from M-
MiT we conducted a set of transfer experiments comparing
ResNet-50 I3D models pretrained on Kinetics [20], Moments
in Time (MiT) and Multi-Moments in Time (M-MiT). We
use the ResNet-50 I3D model trained with the wLSEP
loss function as this model gave us the best single stream
performance on our dataset (Table 1). We compare our results
when transferring to two single label datasets UCF-101 [31]
and HMDB [21] as well as three multi-label datasets AVA
[18], MultiThumos [36] and Charades [29].

Table 4 shows the results of the transfer task where the
top-1, top-5 and mAP scores are calculated by evaluating on
the validation set of the dataset used to fine-tune the model.
Here we refer to the micro mAP as mAP. We can see from
the results that pretraining on M-MiT consistently results in
better performance on the multi-label datasets. This makes
sense as MiT and Kinetics are single-label datasets and were
not trained to handle multiple co-occurring actions. For the
single label datasets, MiT achieves very close performance
to Kinetics on UCF-101 with M-MiT following in third. On
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Fine-Tuned

Pretrained UCF-101 HMDB AVA MultiTHUMOS Charades
Top-1 Top-5 mAP Top-1 Top-5 mAP Top-1 Top-5 mAP Top-1 Top-5 mAP Top-1 Top-5 mAP

Kinetics 0.905 0.987 0.942 0.726 0.911 0.809 0.781 0.973 0.772 0.837 0.964 0.821 0.388 0.731 0.303
MiT 0.908 0.986 0.943 0.756 0.937 0.836 0.802 0.976 0.791 0.849 0.968 0.838 0.383 0.711 0.305

M-MiT 0.892 0.980 0.932 0.740 0.921 0.819 0.807 0.977 0.795 0.873 0.972 0.869 0.414 0.740 0.306
TABLE 4: Dataset transfer performance using ResNet-50 I3D models pretrained on Kinetics, Moments in Time (MiT) and the
proposed Multi-Moments in Time dataset (M-MiT).

Fig. 7: ResNet block-wise interpretability Visualize how dif-
ferent semantic concepts - objects, scenes and actions emerge
across residual blocks of the ResNet-50 network.

HMDB, the M-MiT model performs a little worse than MiT
and a little better than Kinetics. These results are fairly
consistent with prior comparisons between Kinetics and MiT
[27] and show that M-MiT pretrained models excel when
transferring to multi-label settings.

7 MODEL ANALYSIS

7.1 Multi-Label Class Activation Mapping
In Figure 5 we see an example of applying our multi-label
CAM filter to an image with two actions. Using standard
CAM filters it is difficult to disambiguate unique regions
used for the different actions detected in the image (coaching
and punching). As with many actions, the image regions used
by the model for detection are strongly correlated. We use
the proposed multi-CAM approach described in Section 5.1
to highlight the differences between the CAM results for
each predicted class. These differences help us visualize how
the model has learned to discriminate different classes that
may be present in the same image. This is especially useful
for classes that may share multiple visual characteristics. In
Figure 6 we include a diverse set of examples showing results
of this method for different action combinations.

7.2 Learned Action Interpretation
Using the approach described in Section 5.2 we are able to
identify a total of 211 concepts consisting of 1 material, 5 part,
26 texture, 26 object, 33 scene and 120 action concepts learned
in 2023 different features out of 2048 (Figure 9) units in the
final convolutional layer (block4) of a ResNet-50 network
trained on the Multi-Moments in Time dataset. Figure 10
highlights some of the learned concepts. For example, the
network associates crawling with babies as many of our
videos of crawling typically depict babies crawling. These are
the types of data and class biases that are useful to identify
via network interpretation that may have gone unnoticed
without the ability to identify action concepts.

Category Concepts Interpretable
Features

Broden 185 1351
Action Regions 140 1995

Broden+Action Regions 211 2023
TABLE 5: Comparison of the number of concepts and inter-
pretable features identified by NetDissect given the Broden
dataset, the Action Region dataset and the combined dataset on
block 4 of a ResNet-50 trained for action recognition.

Table 5 highlights the fact that including actions in the
Broden dataset helps to interpret a much larger portion of
the features in block 4 of a ResNet-50 trained for action
recognition. With the original Broden set (no actions) NetDis-
sect identified 185 concepts in 1351/2048 features. Adding
actions to this set allowed us to identify 2023/2048 features
that can be interpreted for 211 different concepts including
120 actions. This jump in the number of interpretable
features makes sense for the final block of a model trained
for action recognition and suggests that excluding action
concepts misses a large portion of useful information when
interpreting these models.

The results from the combined set highlight that some of
the features previously interpreted by the original Broden set
as object or texture concepts are more closely aligned with
actions. A few examples of this behavior, and how adding
actions to the Broden dataset improves our interpretation,
can be seen in Figure 11. For example, unit, or feature, 2025
was previously interpreted to be most closely associated with
the texture "bubbly", but after adding the new action regions
to the Broden set we found that the feature is actually more
strongly correlated with the action "surfing".

Examining these interpretable features and how they
contribute to a networks output allows us to build a better
understanding of how our models will function when
presented with different data. This understanding can be
an important tool for model design. For example, improved
understanding of model interpretation has recently been
shown to be useful in improving adversarial robustness
[7], obtaining state-of-the-art autoencoder-based generative
models [14] and manipulating the output of a GAN [5].

7.2.1 Block-wise Interpretability
To understand how individual units evolve over residual
blocks we evaluate the interpretability of features from
different blocks of a ResNet-50 network trained for action
recognition on the Moments in Time dataset [27] in terms of
objects, scenes, actions and textures. In Figure 7 we observe
that action features mainly emerge in the last convolutional
block (block 4) of the model. It is interesting to note that
object and scene features are learned even if the model is not
explicitly trained to recognize objects or scenes suggesting
that object and scene recognition aids action classification.
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bicycling floating grooming writing jogging

Fig. 8: Localized action regions: Bounding boxes annotated around 549 different action
categories in 67,468 image frames each selected from unique videos in the Moments in Time,
Kinetics, and Something-Something datasets.

Fig. 9: Graph of learned action concepts ordered by the number of features associated with each concept.

burning

Unit 684 Unit 1417

climbing

Unit 925 Unit 1858

crawling

Unit 617 Unit 828

drinking

Unit 823 Unit 1321

folding

Unit 1699 Unit 2032

pouring

Unit 21 Unit 821

Fig. 10: Visualization of learned action concepts: Different features learn different representations of the same action. For example,
units 684 and 1417 can both be interpreted as learning the concept of burning (top left). However, unit 684 learns to correlate smoke
with the action while unit 1417 correlates it with a flame.

Unit 626: water (material) → rowing Unit 2025: bubbly (texture) → surfing Unit 1944: corridor (scene) → bowling

Fig. 11: Improved feature interpretation: Examples of the 953 units from the final residual block of a ResNet-50 that changed their
main interpretation when actions were added to the Broden dataset.

7.2.2 Interpretable feature relationships
Examining these interpretable features and how they con-
tribute to a networks output allows us to build a better
understanding of how our models will function when
presented with different data. For example, we can consider
a feature in the final residual block of the network that has
been interpreted as a highway scene feature. If we activate
only this unit by setting its values to 1 and all other feature
(including bias) values to 0 we can identify which actions
are correlated with the fact that a video may take place on
a highway. In this case the actions that achieve the highest
output are hitchhiking, towing, swerving, riding, and driving.
These interpretable feature-class relationships make sense as
all of these actions are likely to occur near a highway.

8 CONCLUSION

Progress in the field of video understanding will come from
many fronts, including training our models with richer and
more complete information, so they can start achieving
recognition performances in par with humans. Augmenting a

large-scale dataset by doubling the number of activity labels,
we present baseline results on the Multi-Moments dataset as
well as improved methods for visualizing and interpreting
models trained for multi-label action detection.
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H. Kim, V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag,
et al. The" something something" video database for learning and
evaluating visual common sense. arXiv preprint arXiv:1706.04261,
2017.

[18] C. Gu, C. Sun, S. Vijayanarasimhan, C. Pantofaru, D. A. Ross,
G. Toderici, Y. Li, S. Ricco, R. Sukthankar, C. Schmid, et al. Ava: A
video dataset of spatio-temporally localized atomic visual actions.
arXiv preprint arXiv:1705.08421, 2017.

[19] Y. Jiang, J. Liu, A. R. Zamir, G. Toderici, I. Laptev, M. Shah, and
R. Sukthankar. Thumos challenge: Action recognition with a large
number of classes, 2014.

[20] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al. The kinetics
human action video dataset. arXiv preprint arXiv:1705.06950, 2017.

[21] H. Kuehne, H. Jhuang, R. Stiefelhagen, and T. Serre. Hmdb51: A

large video database for human motion recognition. In W. E. Nagel,
D. H. Kröner, and M. M. Resch, editors, High Performance Computing
in Science and Engineering ‘12, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[22] Y. Li, Y. Song, and J. Luo. Improving pairwise ranking for multi-
label image classification. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1837–1845, 2017.

[23] J. Lin, C. Gan, and S. Han. Tsm: Temporal shift module for
efficient video understanding. In The IEEE International Conference
on Computer Vision (ICCV), October 2019.

[24] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in
context. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors,
Computer Vision – ECCV 2014, pages 740–755, Cham, 2014. Springer
International Publishing.

[25] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781,
2013.

[26] G. A. Miller. Wordnet: A lexical database for english. Commun.
ACM, 38(11):39–41, Nov. 1995.

[27] M. Monfort, A. Andonian, B. Zhou, K. Ramakrishnan, S. A. Bargal,
T. Yan, L. Brown, Q. Fan, D. Gutfruend, C. Vondrick, et al. Moments
in time dataset: one million videos for event understanding. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 1–8,
2019.

[28] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler,
R. Urtasun, and A. Yuille. The role of context for object detection
and semantic segmentation in the wild. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014.

[29] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and
A. Gupta. Hollywood in homes: Crowdsourcing data collection for
activity understanding. CoRR, abs/1604.01753, 2016.

[30] K. Simonyan and A. Zisserman. Two-stream convolutional net-
works for action recognition in videos. In Advances in neural
information processing systems, pages 568–576, 2014.

[31] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101
human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402, 2012.

[32] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning
spatiotemporal features with 3d convolutional networks. In CVPR,
2015.

[33] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu. Cnn-
rnn: A unified framework for multi-label image classification.
In Computer Vision and Pattern Recognition (CVPR), 2016 IEEE
Conference on, pages 2285–2294. IEEE, 2016.

[34] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large
vocabulary image annotation. In Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Volume
Three, IJCAI’11, pages 2764–2770. AAAI Press, 2011.

[35] H. Yang, J. Tianyi Zhou, Y. Zhang, B.-B. Gao, J. Wu, and J. Cai.
Exploit bounding box annotations for multi-label object recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 280–288, 2016.

[36] S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and
L. Fei-Fei. Every moment counts: Dense detailed labeling of actions
in complex videos. arXiv preprint arXiv:1507.05738, 2015.

[37] J. Zhang, Q. Wu, C. Shen, J. Zhang, and J. Lu. Multi-label image
classification with regional latent semantic dependencies. IEEE
Transactions on Multimedia, 2018.

[38] M.-L. Zhang and Z.-H. Zhou. Multilabel neural networks with
applications to functional genomics and text categorization. IEEE
Trans. on Knowl. and Data Eng., 18(10):1338–1351, Oct. 2006.

[39] B. Zhou, D. Bau, A. Oliva, and A. Torralba. Interpreting deep visual
representations via network dissection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–1, 2018.

[40] B. Zhou, A. Khosla, L. A., A. Oliva, and A. Torralba. Learning Deep
Features for Discriminative Localization. CVPR, 2016.

[41] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learn-
ing deep features for discriminative localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2921–2929, 2016.

[42] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba.
Semantic understanding of scenes through the ade20k dataset.
arXiv preprint arXiv:1608.05442, 2016.



12

Mathew Monfort is a Research Scientist at the
MIT Computer Science and Artificial Intelligence
Laboratory. He received a Ph.D. in computer
science from the University of Illinois at Chicago
in 2016, a M.S. in Computer Science from Florida
State University in 2011 and a B.A. in Mathe-
matics from Franklin and Marshall College in
2009. His research focuses on machine learning,
inverse planning, deep learning and areas related
to learning from human behavior.

Kandan Ramakrishnan is a Postdoctoral asso-
ciate at the MIT Computer Science and Artificial
Intelligence Lab. He received a Ph.D in computer
science from Universiteit van Amsterdam in 2017.
Before that he received a M.S. degree in Elec-
trical Engineering from University of Minnesota,
Twin Cities and B.E. in Electrical Engineering
from S.R.M. University, Chennai. His research
interests are computer and human vision, ma-
chine learning.

Barry A McNamara is currently a Software Engi-
neer at YouTube. He received his M.Eng. and B.S.
in Computer Science at the Massachusetts Insti-
tute of Technology in 2019. His research interests
are in human-computer interaction, including user
interfaces and programming languages.

Quanfu Fan is a Research Staff Member at the
MIT-IBM Watson AI Lab in Cambridge MA. He is
a member of the core R&D team of the IBM Intel-
ligent Video Analysis (IVA) offering. He received
his Ph.D. degree in Computer Science from the
University of Arizona. His research interests are
computer vision and machine learning, with a
focus on video understanding.

Rogerio Schmidt Feris is a principal scientist
and manager of the computer vision and multi-
media department at IBM T.J. Watson Research
Center. He joined IBM in 2006 after receiving
a Ph.D. from the University of California, Santa
Barbara. His work has been integrated into
multiple IBM products including Watson Visual
Recognition, Watson Media, and Intelligent Video
Analytics.

Bowen Pan is a Ph.D. student at the MIT Com-
puter Science and Artificial Intelligence Labora-
tory. He received a B.Eng. degree in Electrical
Engineering from Shanghai Jiao Tong University.
His research interests include computer vision
and machine learning.

Alex Andonian is a Ph.D. student at the MIT
Computer Science and Artificial Intelligence Lab-
oratory. He received a B.S. in Neuroscience,
Physics and Mathematics from Bates College
in 2017. His research interests include computer
vision, machine learning and computational neu-
roscience.

Alex Lascelles gained an undergraduate mas-
ters degree in Physics and Astronomy at the
University of Southampton in the UK.He spent
his final year of research abroad at the Harvard-
Smithsonian Center for Astrophysics under the
supervision of Dr Cecilia Garraffo and Dr Jeremy
Drake and obtained a masters under Prof Joy-
deep Bhattacharya from Goldsmiths, University
of London. He currently works in Dr Aude Oliva’s
lab at MIT as a research assistant.

Dan Gutfruend is a research staff member at the
IBM Research lab in Cambridge MA and a prin-
cipal investigator at the MIT-IBM Watson AI Lab.
in 2005 he received a Ph.D. in computer science
from the Hebrew University in Jerusalem Israel,
where he also earned his B.Sc. and M.Sc. de-
grees. Prior to joining IBM he was a postdoctoral
fellow and a lecturer at Harvard University and
MIT. Currently his research focuses on machine
learning and computer vision.

Aude Oliva is a Senior Research Scientist at the
MIT Computer Science and Artificial Intelligence
Laboratory. After a baccalaureate in Physics
and Mathematics, she received M.Sc and Ph.D
degrees in Cognitive Sciences from the Institut
National Polytechnique of Grenoble, France. She
received the 2006 National Science Foundation
Career award, the 2014 Guggenheim award and
the 2016 Vannevar Bush fellowship. Her research
spans cognitive science, neuroscience and com-
puter vision.


