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Abstract

In this report, we describe our solution for Moments in
Time Challenge 2018. We employed both visual and audio
features in the submission. For visual features, we utilize
the preprocessed RGB and optical flow data for training or
fine-tuning 2D (e.g. Temporal Segment Network (TSN) and
3D (e.g. Inflated 3D ConvNets (I3D). For audio features, we
use raw waveforms as the input modality and fine-tune the
feature extracted from the last pooling layer of SoundNet.
We achieve 31.56% in terms of Top-1 accuracy and 59.75%
in terms of Top-5 accuracy on the validation set.

1. Introduction

The last decodes have witnessed the success of deep
learning in image understanding tasks, i.e. classification [8],
segmentation [1 1], and efc. Researchers have demonstrated
the superiority of state-of-the-art Convolutional Neural Net-
works (CNN) [9, 3] against traditional algorithms with
hand-crafted features. Inspired by the progress, CNNs have
been widely employed to improve the performance of video
understanding tasks. Compared to image understanding
tasks, temporal information of videos can boost the perfor-
mance of video classification. Additionally, auditory sound-
tracks provides an additional clue for video analysis.

We cannot obtain discriminate models without large-
scale labeled dataset, such as ImageNet [2] and ActivityNet
[4]. Recently, the MIT-IBM Watson AI Lab has released
a large-scale Moments dataset [7] to help Al systems rec-
ognize and understand actions and events in videos. This
dataset contains a collection of one million labeled 3 sec-

ond videos, involving people, animals, objects or natural
phenomena, that capture the gist of a dynamic scene. The
Moments in Time Challenge 2018 is based on this dataset.

2. Our Approach

In this section, we describe the features and models we
used for the challenge. We use the standard split defined in
the original paper where 802,244 training video and 37,800
validation video are available.

2.1. Features

Visual Features: All the videos are first resized to
340x256 under 30 fps. We rescale raw RGB values into
[ — 1,1]. We also computed optical flow with the TVLI
algorithm and rescale the value into | — 1,1].

We utilize the preprocessed RGB and optical flow data
for training or fine-tuning 2D(e.g. TSN) and 3D(e.g. 13D
[1]) models. In order to fit the relatively shorter but constant
period for the targeted Moments in Time dataset, we use
dilated frames (with a fixed M network input size with step
size |[N/(M — 1)], where N is the frame size) as inputs
instead of consecutive frames.

To leverage the knowledge from other dataset, we also
use existing models pre-trained on external large datasets
such as Kinetics. In practice, we use the RGB and Opti-
cal flow models pre-trained on ImageNet and as the feature
extractors to extract the features reside in last pooling layer
as new video representation. Specifically, we sample the
center frames of a video as the input and store a (7,1024)
vector for each video. This approach is equivalent to fine-
tuning the layer above last pooling layer of a model.

Audio Features: We average the two channels and re-



sample the audio into 22,050 Hz .wav files. For videos
without audio channel, we fill a 3-second silent audio for
them. We extract the conv7 layer of the soundnet model,
which is pretrained over 2,000,000 unlabeled videos. Then
we feed the features into a 10-layer DenseNet [5] with the
output layer changed to predict moment categories.

2.2. Models

Fine-tune all models For this challenge, we fine-tune
2D(spatial) and 3D(spatial-temporal) models with addi-
tional layers.

For 2D models, built upon TSN, we add an additional
cutout layer. Each sampled (340 x 256) frame will be ran-
domly cut out with a (90 x 90) region. We also tried other
augmentation techniques such as mix-up but found cut-out
is the most feasible one.

For 3D models, we use I3D models with ResNet 50
(R50) as its backbone. In addition to cutout augmentation
layer we add an addition non-local layer to capture the in-
teraction between spatial-temporal units. As in [10], we
add 10 non-local blocks to R50.

Considering the size of the target dataset, we choose to
use network with 8 frame inputs. Empirically we found that
ImageNet pre-trained I3D model with non-local networks
are prone to overfit for Moment in time dataset in com-
parison to 3D models without non-local networks. A bet-
ter choice is to use ImageNet-Kinetics pre-trained models
where we observed preferred behaviors.

Fine-tune last models As described before, we uti-
lize the ImageNet-Kinectics pre-trained I3D models as the
spatial-temporal feature extractor. Take (7,1024) features as
the input, we randomly sample and average 2 frames then
feed to the classification network.

For the classification, we choose the mixture-of-residual
expert (MoRE) network as proposed in[6] with 4 experts
with two-layer network (each layer with 2048 neurons) with
residual links as the classification model for RGB and opti-
cal flow features. We found that with pre-extracted feature
the network are prone to overfit and therefore apply a high
dropout rate (0.8) and append an input batch-normalization
later to train the model.

2.3. Training and Inference Details

For training finetune-all models, we use 3-Titan XP
GPUs with batch size 24 and standard momentum SGD.
With limited resource and time we train each 3D models for
20 epochs. The learning rate is set 0.005 and decayed by
0.1 at 10, 16, 18 epochs respectively. It take roughly 4 days
to train a model. For inferencing, we sample 5 inputs (each
with 8 frams) from a video then mean-pool the predictions
as the video-level prediction.

Training finetune-last models are comparably cost-
effective. We use one Titan XP GPU with batch size 512

and Adam optimizer and train for 80 epochs. The learning
rate is set 0.001 and decayed by 0.1 at 30, 50, 70 epochs. At
testing phase, we loop every frame of a video and generate
frame-wise prediction then mean-pool the results.

2.4. Evaluation metric

Following the stand of the Moments challenge, we em-
ploy top-k accuracy as the evaluation metric. For each
video, the system will generate k labels I;,j = 1...k. The
ground truth label for the video is g. The error of the algo-
rithm for that video would be:

e =mind(l;, g), )
J

where d(x,y) = 0if z = y and 1 otherwise. The over-
all error score for an algorithm is the average error over all
videos. We use k = 1 and k = 5.

2.5. Fusion

In this report, we fuse multiple features for video classi-
fication. We learn the optimal weights for different features
on the validation set. Then we apply these weights on the
testing set, and get the results for the final submission.

3. Results

In this section, we first evaluate the performance of the
individual feature on the validation set. The performance
are shown in Table 1. From the experimental results we can
observe that I3D with non-local network have better per-
formance than I3D without non-local network. For exam-
ple, the performance of I3D with NLN improves the perfor-
mance of 13D without NLN from 28.96 to 29.48 in terms of
top-1 accuracy. However, we observe that I3D with NLN is
prone to overfit. For example, when we use the ImageNet
pretrained 13D with NLN, we get only 25.94 in terms of
top-1 accuracy. This demonstrates the necessity of using
ImageNet and Kinects pre-trained network to avoid overfit-
ting.

After that, we learn the optimal weights for individual
features on the validation set. The weights of utilized fea-
tures are shown in Table 2. With these weights, we have ob-
tained 31.56 in terms of Top-1 accuracy and 59.75 in terms
of Top-5 accuracy on the validation set, respectively.

4. Conclusion

In this report, we have presented our solution to the Mo-
ments in Time Challenge 2018. We found that Inflated
3D ConvNets (I3D) with non-local networks has the best
single model performance. However, we found that Ima-
geNet pre-trained 13D model with non-local networks are
prone to overfit for the challenge dataset. Hence, we choose
to use ImageNet-Kinects pretrained models where we ob-
served preferred performances.



Table 1. Performance evaluation of different features on the validation set.

Type Model Pre-Trained val Top-1 val Top-5 Final Fusion
TSN-Spatial Baseline +K 24.07 48.98 T
TRN-Multiscale Baseline I+K 21.02 43.27 T
Audio SoundNet 8] 6.83 15.41 T
2D-RGB Last-RGB I+K 19.84 41.75 T
2D-OF Last-Optical Flow +K 18.49 39.64 T
3D-RGB All-vanilla-I3D (8 frames) I 28.12 56.04 F
3D-RGB All-I3D (8 frames) I 28.96 56.45 T
3D-RGB AlI-I3D-NLN (8 frames) I 25.94 52.60 F
3D-RGB AlI-I3D-NLN (8 frames) I+K 25.75 53.31 F
3D-RGB All-I3D-NLN (16 frames) I+K 29.48 57.37 T
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