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Abstract
Video-based action recognition is challenging
as spatial and temporal reasonings are involved
jointly. We propose a novel multi-view convolu-
tional architecture, which performs 2D convolution
along three orthogonal views of volumetric video
data. With weight sharing, it is capable of en-
coding spatio-temporal feature of video clips ef-
ficiently, and achieves superior performance over
state-of-the-art spatio-temporal feature learning ar-
chitectures. Furthermore, we also explore the au-
ditory modality, which is complementary to visual
clues. Our final submission to the Moments in Time
challenge 2018 is an ensemble of several visual
RGB and audio models, achieving a top-1 accuracy
of 38.7% and top-5 66.9% on the validation set.

1 Introduction
The task of video-based action recognition requires proper
modelling of both visual appearance and motion pattern. Re-
cently, a significant effort has been devoted to spatio-temporal
feature learning from video clips. Since the success of convo-
lutional neural networks (CNN) in 2D image recognition [1],
3D convolution is a natural adaption for volumetric video
data [2]. However, in C3D [2], significantly more (e.g. 2×)
parameters than its 2D counterpart are introduced, which
makes the model difficult to train and prone to overfitting.
This issue is particularly critical when the training data size
is limited. P3D [3] and (2+1)D [4] attempted to address the
issue by decomposing a 3D convolution into a 2D convolu-
tion along the spatial dimension and a 1D convolution along
the temporal dimension. We argue that the “unequal” treat-
ment of spatial and temporal features is undesirable. On the
contrary, we propose Multi-View CNN (MV-CNN), which
performs feature extraction along the spatial and temporal di-
mensions in a consistent way. The details of MV-CNN are
described in Section 2.1. To further improve the overall accu-
racy, we train non-local networks [5] for model ensemble.

2 Method
In this work, we explore multiple modalities for categorizing
the action occurring in a video. Our visual RGB model is
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Figure 1: Comparison of MV-CNN to common spatio-temporal fea-
ture learning architectures. (a) C3D. (b) (1+2)D. (c) the proposed
MV-CNN.

based on an ensemble of the proposed MV-CNN and other
state-of-the-art spatio-temporal feature learning models. We
also tried optical flow, but found that it do not contribute to
the final accuracy after ensemble. However, we do exploit
audio-based action recognition, which is complementary to
visual signal.

2.1 Multi-View CNN
A video clip can be represented as a 3D array of dimension
T ×H×W , where T , H and W are number of frames, frame
height and frame width respectively. Taking kernel size of 3
as an example, Figure 1 compares the proposed MV-CNN to
common convolutional architectures. In C3D, a 3D 3× 3× 3
convolution is utilized to extract spatial (H and W ) and tem-
poral (T ) features jointly. In the (1+2)D configuration, a 1D
3 × 1 × 1 convolution is utilized to aggregate temporal fea-
ture, followed by a 2D 1× 3× 3 convolution for spatial fea-
ture. While in the proposed MV-CNN, we perform 2D 3× 3
convolutions along three views of the T ×H ×W volumet-
ric data, i.e. T × H , T × W and H × W separately. The
three orthogonal views are conceptually similar to the three
anatomical planes of human body, namely sagittal, coronal
and transverse. Notably, the parameters of the three-view
convolutions are shared, such that the number of parameters
is kept the same as single-view 2D convolution. The three
resulting feature maps are further aggregated with weighted
average. The weights are also learned during training in an
end-to-end manner. To facilitate training, we initialize the 2D
convolutional kernels with a ImageNet [6] pretrained model.

For each model, to obtain better generalization on the test



set, the Stochastic Weight Averaging (SWA) scheme [7] is
adopted. Several model variants of the same network are
trained with cycle learning rate and subsequently form an en-
semble.

2.2 Auditory Modality
Complementary to visual signal, sound conveys important in-
formation for action recognition. Therefore, in our method,
audio streams extracted from videos are exploited for the
task of action categorization. In audio processing, log-mel
spectrum is a powerful hand-tuned feature, exhibiting local-
ity in both time and frequency domains [8]. In ResNet-
34 [9], the 2D log-mel feature is cast into an image, and a
34-layer ResNet is applied for audio classification. While
M34-res [10] and EnvNet [11] attempted to learn semantic
feature from the 1D raw audio waveforms in an end-to-end
way. We train the three state-of-the-art models on the Mo-
ments in Time dataset. Notably, we adapt EnvNet [11] with
residual connections, and henceforth refer to the variant as
EnvNet+ResNet.

3 Experiments
The Moments in Time dataset [12] contains 802245 training
videos and 39900 validation videos. Excluding the videos
without audio track, the auditory dataset contains 450k train-
ing segments and 20k validation segments. In total 339 action
categories are annotated. In all experiments, our models are
trained on the provided Moments in Time training data only.
Apart from ImageNet, no other video datasets are used for
pretraining.

For the visual RGB model, during training, we select 64
continuous frames from a video and then sample 8 frames
by dropping the 7 frames in between. The spatial size is
224 × 224 pixels, randomly cropped from a scaled video
whose shorter side is randomly sampled between 256 and 320
pixels. During inference, following [5] we perform spatially
fully convolutional inference on videos whose shorter side is
rescaled to 256 pixels. While for the temporal domain, we
sample 6 clips evenly from a full-length video and compute
softmax scores on them individually. The final prediction is
the averaged softmax scores of all clips.

In this work, we use ResNet-101 [13], Inception-v4 and
Inception-ResNet-v2 [14] as the backbone models, which are
pretrained on ImageNet. The proposed MV-CNN along with
C3D and non-local (NL) models are trained to form an en-
semble. The top-1 and top-5 accuracies of individual models
as well as their ensemble are shown in Table 1. For Inception-
ResNet-v2, MV-CNN obtains 35.6% top-1 and 63.6% top-5
accuracy, leading to 0.5% and 0.3% accuracy gain compared
with the C3D baseline. It is worth noting that with MV-CNN,
more significant performance gain can be obtained on smaller
sized datasets like UCF-101 [15]. On large-scale datasets like
Moments in Time, the performance gain saturates, which is
reasonable as increasing data size could be more effective
than algorithmic innovations. With an ensemble of visual
RGB models alone, we achieve a top-1 accuracy of 37.7%
and top-5 65.9%.

For the training of audio models, all the sound data are
downsampled to a frequency of 16kHz. For M34-res, we train

Table 1: Accuracy on the validation set of the Momements in Time
dataset. Performances of both individual visual and audio models
and their ensemble are shown.

Model Modality
Accuracy (%)
top1 top5

ResNet-101-C3D RGB 33.6 61.2
ResNet-101-NL RGB 32.8 60.8

Inception-v4-C3D RGB 34.3 62.0
Inception-ResNet-v2-C3D RGB 35.1 63.3
Inception-ResNet-v2-NL RGB 34.8 63.3
Inception-ResNet-v2-MV RGB 35.6 63.6

Ensemble RGB 37.7 65.9
ResNet-34 Audio 13.8 23.6
M34-res Audio 14.8 27.4

EnvNet+ResNet Audio 13.2 25.9
Ensemble Audio 17.6 31.1
Ensemble RGB+Audio 38.7 66.9

two models for audio section lengths of 1s and 3s separately.
Then their scores are averaged. This multi-scale training
and inference scheme improves the robustness against audio
length. The performances of the three audio models are sum-
marized in Table 1. With an ensemble of audio models alone,
we obtain 17.6% top-1 and 31.1% top-5 accuracy. With an
ensemble of visual RGB and audio models, we achieve a top-
1 accuracy of 38.7% and top-5 66.9%.

4 Conclusions
In our submission to the Moments in Time challenge 2018,
we explore multiple modalities for the task of video-based
action recognition. Particularly, we propose a novel multi-
view convolutional architecture, which achieves superior per-
formance over the C3D baseline with significantly less num-
ber of parameters. A more thorough and systematic evalua-
tion of the architecture is left for future work.
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