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Abstract

Action recognition in videos remains a challenging prob-
lem in the machine learning community. Particularly chal-
lenging is the differing degree of intra-class variation be-
tween actions: While background information is enough
to distinguish certain classes, many others are abstract
and require fine-grained knowledge for discrimination. To
approach this problem, in this work we evaluate differ-
ent modalities on the recently published Moments in Time
dataset, a collection of one million videos of short length.

1. Introduction
There are hundreds of thousands of activities occurring

around us in our daily life. Most of these activities are not
only restricted to one person or a single motion, but involve
many types of actors in different environments, at differ-
ent scales, and with many different modalities. If we want
to solve problems that are relevant to our real world, it is
necessary to develop models that scale to the level of com-
plexity and abstract reasoning that a human processes on
a daily basis. We propose a new approach to tackle these
challenges. To evaluate our work, we use the Moments in
Time Dataset [7].

Moments in Time Dataset is a large-scale human-
annotated collection of one million short videos corre-
sponding to dynamic events unfolding within three seconds
and has a significant intra-class variation among the cate-
gories.

The dataset poses a number of challenges that we need
to conquer. First, the videos have a diverse set of actors,
including people, objects, animals and natural phenomena.
Second, the recognition may depend on the social context
of ownership and the type of place. For example, picking
up an object, and carrying it away while running can be cat-
egorized as stealing, saving or delivering, depending on the
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ownership of the object or the location where the action oc-
curs. Third, the temporal aspect: the same set of frames in a
reverse order can actually depict a different action, consider
for example opening vs. closing. Since we want to
build a true video understanding model, we need to be able
to recognize events across agent classes. In other words,
it is necessary to recognize these transformations in a way
that will allow them to discriminate between different ac-
tions, yet generalize to other agents and settings within the
same action.

In this work, we investigate the fusion of features of dif-
ferent modalities. In Section 2, we outline each modality.
In Section 3, we discuss the fusion methods, and provide
preliminary results on the Moments in Time Mini validation
set. Finally, Section 4 discusses analytic insights into the
dataset based on a simple RGB baseline.

2. Methodology
We investigated a number of modalities of interest for

action recognition. We first discuss each modality, and then
examine both early and late fusion of these modalities.

2.1. RGB and optical flow

In action recognition, we consider two essential visual
concepts: appearances and motions. Most action recogni-
tion work uses RGB frame and optical flow as the visual
representation respectively. In order to fully utilize the vi-
sual contents from videos, a practical approach, introduced
by [9], models short temporal snapshots of videos by aver-
aging the predictions from a single RGB frame and a stack
of 10 externally computed optical flow frames, which is also
known as Two-stream ConvNets method.

Temporal Segment Networks There have been many im-
provements over the basic two-stream architecture, and one
of the most well-known method is Temporal Segment Net-
works (TSN) [11]. Instead of working on single frames or
frame stacks, TSN operate on a sequence of short snippets
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sparsely sampled from the entire video. Each snippet in this
sequence will generate its own preliminary prediction of the
action classes. Then a consensus among the snippets will be
derived as the video-level prediction. We use the same set-
tings as the original work for our prediction.

Temporal Relational Reasoning Temporal Relational
Reasoning Network (TRN) [12] can learn and discover pos-
sible temporal relations at multiple time scales. TRN is a
general and extensible module that can be used in a plug-
and-play fashion with any existing CNN architecture. We
also use the same settings for our prediction.

2.2. Sound

Sound is a valueable modality in action recognition. It
can not only complement visual observations, but also help
add information where vision is not available, i.e., unseen
or occluded surroundings.

Feature extraction We use two pretrained models for au-
dio feature extraction: Audio Event Net (AENet) [10] and
VGGish pretrained on AudioSet[4].

To ensure that our sound features are useful for the fu-
sion tasks, we ignore those videos with no audio channels
or channels that are muted. We use wav file format with
16kHz sampling rate, 16bit, monoral channel; the codec is
PCM S16 LE.

In AENet, the dimensions of extracted features are
(N, 1024), where N equals to the total length in seconds.
On the other hand, we used the VGGish to save those fea-
tures into (N, 3, 128) embeddings. It took about 12 hours
to extract features for each from the mini training set with
one K80 GPU.

We trained 200 linear SVM binary classifiers for each
class using the extracted AENet and VGGish features re-
spectively. Besides, we did not perform any preprocessing
on the extracted AENet features while we flattened the ex-
tracted VGGish features to dimension (N, 384) before we
fed them into the SVM classifiers for training and testing.
We got distances to the 200 separating hyperplanes after
feeding each testing sample into the 200 binary classifiers
and use these distances to do classification.

Table 1. Numbers of videos with and without sound
Videos With sound Without sound Total
Training 55,933 44,067 100,000
Validation 6,286 3,714 10,000
Testing 12,776 7,224 20,000

Feature generation We found out that not all the videos
have sound track. The detailed number of videos with and
without sound is listed in Table 1. We can see half of videos

Figure 1. Sound generation with LSTM.

Figure 2. Sound generation with Encoder-Decoder.

do not have sound, but the sound plays an important role in
videos. Therefore, we want to generate the sound represen-
tation for those videos without sound.

We use two basic structures to generate the sound:
LSTM in Figure 1 and encoder-decoder in Figure 2. First,
we use the feature representation extracted by TSN as struc-
ture input, then go through the structure and get the out-
put feature. The groundtruth sound representation is ex-
tracted by AENet and VGGish. In training stage, we use
videos with sound to be the training set, and in testing stage,
we will generate the sound representation for those videos
without sound. We have four kinds of settings: L2 loss+ w/
classifier, L2 loss+ w/o classifier, KL loss+ w/ classifier, KL
loss+ w/o classifier. We want to know if label information
and different kind of loss are important to the generation.

Table 2. AENet generation with LSTM.
AENet / LSTM Top-1 acc. Top-5 acc.
w/o generation (baseline) 4.41% 11.78%
L2 loss, w/ classifier 4.53% 11.69%
L2 loss, w/o classifier 5.19% 13.44%
KL Div., w/ classifier 4.47% 11.50%
KL Div., w/o classifier 4.45% 11.40%
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Table 3. VGGish generation with LSTM.
VGG / LSTM Top-1 acc. Top-5 acc.
w/o generation (baseline) 1.57% 7.29%
L2 loss, w/ classifier 1.54% 6.91%
L2 loss, w/o classifier 1.95% 7.59%
KL Div., w/ classifier 1.59% 6.85%
KL Div., w/o classifier 1.59% 6.83%

Table 4. AENet generation with fully-connected.
AENet / FC Top-1 acc. Top-5 acc.
w/o generation (baseline) 4.41% 11.78%
L2 loss, w/ classifier 4.70% 11.70%
L2 loss, w/o classifier 4.70% 11.70%
KL Div., w/ classifier 4.52% 11.48%
KL Div., w/o classifier 4.55% 11.60%

Table 5. VGGish generation with fully-connected.
VGGish / FC Top-1 acc. Top-5 acc.
w/o generation (baseline) 1.57% 7.29%
L2 loss, w/ classifier 2.19% 7.86%
L2 loss, w/o classifier 2.11% 7.84%
KL Div., w/ classifier 1.71% 7.23%
KL Div., w/o classifier 1.72% 6.90%

Feature generation performance The generation perfor-
mance is found in Tables 2,4,3,5. We can see that for
AENet feature, L2 loss + w/o classifier performs the best,
and for Vggish feature, L2 loss + w/ classifier performs the
best. Therefore, we choose these two model to generate our
sound representation.

2.3. Pose-centric features

Our preliminary evaluation, see also Section 4, shows
that classes with large intra-class variations, i.e., more ab-
stract classes, are hard to learn for baseline models. To
attempt an improvement of these classes, we learn fine-
grained, human pose-based features.

Method. We generate discriminative human pose features
with the help of Recurrent Pose Attention Networks (RPAN)
[2]. Given the convolutional feature maps Ct of each video
frame, attention maps αJ

t are learned for each joint J in a
human pose. The learning process is supervised by the in-
clusion of an l2-regression term. As the Moments in Time
dataset does not provide human pose annotations, we em-
ploy the human pose detector in [1] to retrieve groundtruth
annotations.

For the purposes of this work, we simplify the formula-
tion of α̃t =

[
α̃0
t , · · · , α̃J

t

]
by dropping the partial parame-

ter sharing used in [2]:

α̃t = v ∗J tanh (Ah · ht−1 +Ac ∗D Ct + b) (1)

αJ
t = softmax

(
α̃J
t

)
(2)

where ∗J denotes a (1 × 1 × J) convolution. The term
Ah · ht−1 has dimension D = 32 and is therefore broad-
casted over the spatial dimensions. Input ht−1 is the previ-
ous output of the recurrent network learned on body parts,
see below.

Given the attentional maps αJ
t , we can construct human

body parts P by summation. We follow the work in [2], and
construct five body parts torso, elbow, wrist, knee, ankle.
More formally, we construct FP

t :

FP
t =

∑
J∈P

∑
k

αJ
t ◦ Ct (3)

where ◦ denotes elemenwise multiplication (attention maps
are broadcasted over the channel dimension). The result is
a fixed-size descriptor for each body part. These five pose
features are then max-pooled to form the input to an LSTM
recurrent network, for details please refer to [2].

Performance. The method by itself achieved a top-1 ac-
curacy of 21.0% on Moments in Time Mini dataset. This
is largely due to the lack of human poses in many classes,
which will result in FP

t = 0. In fact, using the pose detec-
tor in [1], we were not able to extract any pose for roughly
47% of all frames.

2.4. Attribute

We consider that some specific objects will appear in
related videos, e.g., a knife often appears in the video of
cutting and slicing, a mower often appears in the
video of mowing, and a computer often appears in the
video of typing. According to the above inference, we
can take these specific objects as the attributes of related
videos. In order to obtain the attributes of videos, we use
ResNet101 [5] pre-trained on two publicly available multi-
label datasets, NUS-WIDE [8] (81 concept labels) and MS-
COCO [6] (80 object labels) to extract the feature. We ex-
tract features at one frame per second because we believe
that the composition of objects will not change dramatically
on a framewise basis.

Method We concatenate the extracted feature of three
frames as X ∈ R3×2048. Given the input X ,

y = f(X, θ), y ∈ R200 (4)

where y = [y1, y2, ..., y200]T are the predicted label confi-
dences computed by two fully-connected layers.
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Table 6. The accuracy of different feature extracted from
ResNet101 pre-trained on NUS-WIDE dataset and COCO dataset.

Dataset Top-1 accuracy Top-5 accuracy
NUS-WIDE[8] 10.02% 27.15%
MS-COCO[6] 10.14% 27.57%

Table 7. Five classes perform the best.
Best classes NUS-WIDE[8] MS-COCO[6]
Top-1 Grilling: 60% Grilling: 56%
Top-2 Mowing: 54% Clinging: 54%
Top-3 Typing: 52% Howling: 54%
Top-4 Welding: 52% Hiking: 48%
Top-5 Clinging: 46% Boiling: 46%

Performance According to the result show in Table 7, we
can find out that the more similar composition of objects is,
the higher accuracy we will get.

2.5. Attribute consistency loss

Method Attribute consistency loss (ACL), introduced by
[3], focuses on the domain adaptation under the setting of
fine-grained recognition. ACL hopes the deep model will be
more generalized to examples from the real world instead of
overfitting on a given dataset.

In order to do so, ACL uses the concept of multi-task
learning: predict classes and attributes at the same time
by sharing the last features extracted from the deep model.
Here attributes can be any properties we detected from ex-
amples. In our case, we use the scores of a model deal-
ing with COCO object detection tasks (80 objects in total).
In other words, our attributes represents the probability of
occurrence of each object in a video. Besides predicting
classes and attributes, the other part in ACL is to reduce
the distribution distance (measured by symmetric KL diver-
gence) between predicted attributes and mapped attribute,
where mapped attribute is mapped from predicted classes.

In our case, we calculate all the objects’ scores for each
video in the training set. The results are then grouped by
action class to aggregate the mean. Consequently, we have
the function to map from action class to 80 object occur-
rence scores.

Table 8. Five highest and lowest intra-class object variation.
Class Highest Class Lowest
Feeding 1.91618 Erupting 1.28444
Spreading 1.91230 Protesting 1.33439
Scratching 1.87774 Waxing 1.34714
Chewing 1.87588 Tattooing 1.36594
Biting 1.87104 Mowing 1.40809

Performance First, we tried a simple model (LSTM over
DenseNet) to evaluate the score with/without ACL on the

Table 9. Correlation between F1 score and intra-class object vari-
ation

Correlation Top-1 acc. Top-5 acc.
Base model -0.6019 -0.5462
With ACL -0.5883 -0.5933

Figure 3. The structure of early fusion method. We fuse the feature
maps of the modalities mentioned above at different stages, and
then predict the final results.

Moments dataset. The one with ACL took longer time to
converge but got close accuracy compared to the one with-
out ACL. We also computed the intra-class object variation,
and the results are found in Table 8. However, from Ta-
ble 9, we find that the F1 score of a class with lower intra-
class attributes variation will be higher (negative correla-
tion), showing that if the videos in a class have relatively
consistent object occurrence, its easier for a model to per-
form prediction. Moreover, the model with ACL has lower
correlation than the one without ACL. After we apply ACL
on TSN, the performance drops a bit. Due to the lack of
time, we abandon it and did not do deeper examination. If
more attributes extractors from different views are applied,
it might be beneficial for future fusion.

3. Fusion
We evaluate two fusion schemes, Early Fusion and Late

Fusion.

3.1. Early fusion

The early fusion structure is depicted in Figure 3. Let
the feature map extracted from ResNet101 pre-trained on
COCO dataset be denoted as C ∈ R7×7×2048, the feature
map extracted from ResNet101 pre-trained on NUS-WIDE
dataset as N ∈ R7×7×2048, the rgb feature map extracted
from TSN as R ∈ R7×7×1024, the optical flow feature map
extracted from TSN as F ∈ R7×7×1024, the feature ex-
tracted from AENet as E ∈ R1024 and the feature map
extracted from VGGish as V ∈ R3×128.

For the frame part, first, we concatenate C and N , then
go through a 1 × 1 convolution layer to fuse these two
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modalities and denote the fusion feature map of attribute
as A ∈ R7×7×1024. Second, we concatenate A, R and F
then go through a 1×1 convolution layer to fuse these three
modalities and denote the fusion feature map of frame as
M ∈ R7×7×1024. Third, let M go through a global average
pooling layer and get M ∈ R1024.

For the sound part, first, we do zero padding for those
videos without sound. Second, we concatenate E and V ,
then go through a fully-connected layer to fuse these two
modalities and denote the fusion feature map of sound as
S ∈ R1024.

Last, we concatenate M and S as our final feature ∈
R2048 and go through a fully-connected layer to get the pre-
diction.

Table 10. The accuracy of early fusion.
Method Top-1 accuracy Top-5 accuracy
Early fusion 22.19% 45.45%

Table 11. The accuracy of early fusion compares to the accuracy
of late fusion.

Increase Decrease
Top-1 Ascending: +37% Sailing: -72%
Top-2 Bending: +24% Protesting: -57%
Top-3 Playing music: +18% Surfing: -54%
Top-4 Biting: +15% Hiking: -46%
Top-5 Baking: +14% Diving: -42%

Performance According to the result shown in Table 11,
we can find out that the method of late fusion is better than
the method of early fusion on the video classification prob-
lem.

3.2. Late fusion

We take the (pre-softmax) prediction scores of every
modalities and do the simple and (scalar) weighted average.
The results are shown in Table 12.

Table 12. Late fusion of 7 modalities on the MIT Mini validation
set.

Method Top-1 accuracy Top-5 accuracy
Average fusion 37.09 65.29
Weighted fusion 44.21 72.96

3.3. Ablative study of Late Fusion

In order to identify which modalities provides the largest
impact, we perform an ablative study. Given the classi-
fier scores for the seven modalities, we run two late fusion
methods (summation and scalar weighting) and report the

Table 13. Ablative study for (late) sum fusion of 7 modalities on
the MIT Mini validation set.

Configuration Top-1 accuracy (%) Top-5 accuracy (%)
Full 37.09 65.29
w/o TSN (RGB) 31.45 58.11
w/o Flow 34.2 62.01
w/o Aenet 36.96 65.21
w/o Attribute 37.05 65.3
w/o VGGish 36.58 64.82
w/o RPAN 44.84 73.83
w/o TRN (RGB) 31.92 60.12

Table 14. Ablative study for (late) weighted fusion of 7 modalities
on the MIT Mini validation set.

Configuration Top-1 accuracy (%) Top-5 accuracy (%)
Full 44.21 72.96
w/o TSN (RGB) 37.62 65.92
w/o Flow 39.81 69.22
w/o AENet 43.76 72.77
w/o Attribute 44.22 73.05
w/o RPAN 44.24 73.34
w/o TRN (RGB) 37.47 66.95

results in Tables 13 and 14. Note that we tried other param-
eterized fusion methods, but do not report results here, as
those severely overfitted.

Clearly, RGB features remain the most important modal-
ity. Pose features did not perform well in the 7-modality fu-
sion, however, it should be noted that RPAN did add a 6%
improvement when only the first six modalities were con-
sidered, i.e., TRN was left out.

4. Analysis
We train a baseline model consisting of ResNet-50 with

an added LSTM layer, and share the observations of our
analysis. We begin by studying the confusion matrix and
distinguishing different types of confusion:

Semantic similarity is an issue where classes have simi-
lar meaning. An example is slicing, which is misrecog-
nized as chopping in 28% of validation set cases.

Visual similarity Certain actions cannot be discriminated
by visual features alone, but require other modalities. An
example for this case is howling being falsely classified
as barking by the RGB baseline in 24% of examples.

Subset of class Numerous actions form a subset of or
intersect with another action class, which necessitates
multi-label classification. The classes pedaling and
bicycling exemplify this, where the latter is misclassi-
fied as the former in 16% of cases.
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Time reversed classes show similar visual content, but
are reversed from each other. One classic instance here
is closing, which is misclassified in 20% of cases as
opening.

4.1. F1-score ranking

In the following, we rank classes by their (baseline) F1-
score and note our observations. While we cannot list all
classes, we list a selection actions in Table 15. Note that
for space reasons the table does not show all best- or worst-
performing actions.

Table 15. F1-score for selected actions in baseline ResNet-50 +
LSTM model.

Class name F1-Score
Erupting 0.612
Rafting 0.549
Bulldozing 0.454
· · · · · ·
Spreading 0.040
Catching 0.026
Opening 0.020
Pulling 0.000

We observe that performance correlates with intra-class
variation. Classes such as erupting are typically subject
to smoke, lava, etc. and therefore easy to recognize. This
is unlike the actions with low F1-score in Table 15: Actions
like pulling are more abstract and can be associated with
one of a diverse set of objects; these actions hence have a
large intra-class variability.

We propose that more fine-grained features are necessary
to improve the failure cases with high intra-class variance.
In particular, instead of relying on background information,
fine-grained information about pose needs to be retrieved
and processed.

5. Conclusions
In this paper, we evaluated many modalities in videos on

the Moments in Time dataset, which has a significant intra-
class variation among the categories. This work discussed
the essential elements of videos from different aspects, and
demonstrated experiments on different modalities. Our ex-
periments also indicate that late fusion with many modali-
ties performs better than early fusion.
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