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Moments in Time Dataset: one million
videos for event understanding
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Alex Andonian, Tom Yan, Kandan Ramakrishnan, Lisa Brown,

Quanfu Fan, Dan Gutfruend, Carl Vondrick, Aude Oliva

Abstract—We present the Moments in Time Dataset, a large-scale human-annotated collection of one million short videos
corresponding to dynamic events unfolding within three seconds. Modeling the spatial-audio-temporal dynamics even for actions
occurring in 3 second videos poses many challenges: meaningful events do not include only people, but also objects, animals, and
natural phenomena; visual and auditory events can be symmetrical or not in time ("opening" means "closing" in reverse order), and
transient or sustained. We describe the annotation process of our dataset (each video is tagged with one action or activity label among
339 different classes), analyze its scale and diversity in comparison to other large-scale video datasets for action recognition, and report
results of several baseline models addressing separately and jointly three modalities: spatial, temporal and auditory. The Moments in
Time dataset designed to have a large coverage and diversity of events in both visual and auditory modalities, can serve as a new
challenge to develop models that scale to the level of complexity and abstract reasoning that a human processes on a daily basis.

Index Terms—video dataset, action recognition, event recognition
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1 INTRODUCTION

“The best things in life are not things, they are moments”
of raining, walking, splashing, resting, laughing, crying,
jumping, etc. Moments happening in the world can unfold
at time scales from a second to minutes, occur in different
places, and involve people, animals, objects, as well as natural
phenomena, like rain, wind, or just silence. Of particular
interest are moments of a few seconds: they represent an
ecosystem of changes in our surroundings that convey
enough temporal information to interpret the auditory and
visual dynamic world.

Here, we introduce the Moments in Time Dataset, a
collection of one million short videos with a label each,
corresponding to actions and events unfolding within 3 sec-
onds.1 Crucially, temporal events of such length correspond
to the average duration of human working memory [1], [6].
Working memory is a short-term memory-in-action buffer: it
is specialized in representing information that is changing
over time. Three seconds is a temporal envelope which holds
meaningful actions between people, objects and phenomena
(e.g. wind blowing, object falling on the floor, picking up
something) or between actors (e.g. greeting someone, shaking
hands, playing with a pet, etc).

Bundling three seconds actions together allows for the
creation of "compound" activities occurring at a longer time
scale. For example, picking up an object, and carrying it away
while running could be interpreted as the compound action
"stealing", or "saving" or "delivering" depending on the social
context of ownership and the type of place the activity occurs
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in. Hypothetically, when describing such a "stealing" event,
one can go into the details of the movement of each joint
and limb of the persons involved. However, this is not how
we naturally describe compound events. Instead, we use
verbs such as "picking", "carrying" and "running". These are
the actions, which typically occur in a time window of 1-3
seconds. The ability to automatically recognize these short
actions is a core step for automatic video comprehension.

The increasing availability of very large datasets (on
the order of millions of labeled samples) is enabling rapid
progress on challenging computer vision problems such as
event and activity detection, common-sense interpretation or
prediction of future events. Modeling the spatial-temporal
dynamics even for events occurring in 3 second videos,
poses a daunting challenge. For instance, inspecting videos
in the dataset labeled with the action "opening", one can find
people opening doors, gates, drawers, curtains and presents,
animals and humans opening eyes, mouths and arms, and
even a flower opening its petals. Furthermore, in some cases
the same set of frames in reverse order actually depict a
different action ("closing"). The temporal aspect in this case
is crucial to recognition. Humans recognize that all of the
above mentioned scenarios belong to the category "opening"
even though visually they look very different from each
other. There is a common transformation that occurs in space
and time involving certain agents and/or objects that allows
humans to associate it with the semantic meaning of the
action "opening". The challenge is to develop models that
recognize these transformations in a way that will allow them
to discriminate between different actions, yet generalize to
other agents and settings within the same action.

We expect the Moments in Time Dataset, the first version
of which we present here, to enable models to richly

1. The website is http://moments.csail.mit.edu
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Fig. 1: Sample Videos. Day-to-day events can happen to many types of actors, in different environments, and at different
scales. Moments in Time dataset has a significant intra-class variation among the categories. Here we illustrate one frame for
a few video samples and actions. For example, car engines can open, books can open, and tulips can open.
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understand actions and dynamics in videos. To the best
of our knowledge, the collection is one of the largest human-
annotated video datasets capturing visual and/or audible
short events, produced by humans, animals, objects or nature.
The classes are chosen such that they include the most
commonly used verbs in the English language, covering
a wide and diverse semantic space.

This work presents the first version of the Moments in
Time dataset which includes one action label per video, and
339 different action classes. Clearly, there could be more
than one action taking place even in a video that is three
seconds long. This may hinder the performance of action
recognition models which may predict an action correctly
yet be penalized because the ground truth does not include
that action. We therefore believe that the top 5 accuracy
measure, commonly used in computer vision models to
report classification performances, will be more meaningful
for this version of the dataset. While the main purpose of
this paper is to introduce the Moments in Time Dataset
itself, in Section 4 we report experimental results of several
known models trained and tested on the dataset, addressing
separately and jointly three modalities: spatial, temporal and
auditory.

As it is likely unfeasible to teach an exhaustive list of
possible human-object-element interactions and activities,
one strategy is to provide deep learning algorithms with
a large coverage of the ecosystem of visual and auditory
moments. The diversity of the Moments in Time dataset
may enable models to learn discriminant information that
is not necessarily taught in a fully supervised manner,
allowing models to be more robust to unexpected events
and generalize to novel situations and tasks.

2 RELATED WORK

Video Datasets: Large scale image datasets such as ImageNet
[37] and Places [54], [55], have allowed great progress to
be made for visual recognition in static images. Over the
years, the size of video datasets for video understanding
has grown steadily. The KTH [40] and Weizmann [8] were
early datasets for human action understanding. Hollywood2
[32] used feature length movie films, and LabelMe video
[50] used consumer video to create video datasets for action
recognition and future prediction. The UCF101 dataset [44]
and THUMOS [25] datasets are built from web videos that
have become important benchmarks for video classification.
JHMDB [24] has human activity categories with joints
annotated. Kinetics [27] and YouTube-8M [2] introduced a
large number of event categories by leveraging public videos
from YouTube. The micro-videos dataset [33] uses social
media videos to study an open-world vocabulary for video
understanding. ActivityNet [9] explores recognizing activi-
ties in video and AVA [17] explores recognizing fine-grained
actions with localization. The “something something” dataset
[16] has crowdsourced workers collect a compositional video
dataset, and Charades [42] uses crowdsourced workers to
perform activities to collect video data. The VLOG dataset
[14] and ADL [35] uses daily human activities to collect data
with natural spatio-temporal context. As described below,
two key features of the Moments in Time dataset are diversity
and scale. In particular, we focus on brief moments where

the agents are not limited to humans (for example, many
objects can “fall” or “open”, see Figure 1).

Video Classification: The availability of video datasets
has enabled significant progress at video understanding
and classification. In early work, Laptev and Lindeberg
[31] developed space-time interest point descriptors and
Klaser et al. [29] designed histogram features for video.
Pioneering work by Wang et al. [48] developed dense action
trajectories by seperating foreground motion from camera
motion. Sadanand and Corso [38] designed ActionBank as a
high-level representation for video and action classification,
and Pirsiavash and Ramanan [36] leverage grammar models
for temporally segmenting actions from video. Advances
in deep convolutional networks have enabled large-scale
video classification models [26], [43], [12], [47], [49], [10].
Various approaches of fusing RGB frames over the temporal
dimension are explored on the Sport1M dataset [26]. Two
stream CNNs with one stream of static images and the
other stream of optical flows are proposed to fuse the
information of object appearance and short-term motions [43].
3D convolutional networks [47] use 3D convolution kernels
to extract features from a sequence of dense RGB frames.
Temporal Segment Networks sample frames and optical flow
on different time segments to extract information for activity
recognition [49]. A CNN+LSTM model, which uses a CNN
to extract frame features and an LSTM to integrate features
over time, is also used to recognize activities in videos [12].
Recently, I3D networks [10] use two stream CNNs with
inflated 3D convolutions on both dense RGB and optical
flow sequences to achieve state of the art performance on the
Kinetics dataset [27].

Sound Classification: Environmental and ambient sound
recognition is a rapidly growing area of research. Stowell et
al. [45] collected an early dataset and assembled a challenge
for sound classification, Piczak [34] collected a dataset of fifty
sound categories and enough to train deep convolutional
models, Salamon et al. [39] released a dataset of urban
sounds, and Gemmeke et al. [15] use web videos for sound
dataset collection. Recent work is now developing models
for sound classification with deep neural networks. For
example, Piczack [34] pioneered early work for convolutional
networks for sound classification, Aytar et al. [4] transfer
visual models into sound for auditory analysis, and Hershey
et al. [20] develop large-scale convolutional models for sound
classification, and Arandjelović and Zisserman [3] train
sound and vision representations jointly. In Moments in
Time dataset, many videos have both visual and auditory
signals, enabling for multi-modal video recognition.

3 THE MOMENTS IN TIME DATASET

The goal of this project is to design a high-coverage, high-
density, balanced dataset of hundreds of verbs depicting
moments of a few seconds. High-quality datasets should
have broad coverage of the data space, high diversity and
density of samples, and the ability to scale up. At the time
this article is written, the first version of the Moments in
Time Dataset consists of over 1,000,000 3-second videos
corresponding to 339 different verbs depicting an action
or activity. Each verb is associated with over 1,000 videos
resulting in a large balanced dataset for learning a basis of
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dynamical events from videos. Whereas several verbs and
actions are often needed to describe the richness of a few
seconds event (see examples in Figure 5), the first release,
comes with one ground truth verb per video. Importantly,
the dataset is designed to have, and to grow towards, a very
large diversity of both inter-class and intra-class variation
that represent a dynamical event at different levels of
abstraction (i.e. "opening" doors, drawers, curtains, presents,
eyes, mouths, even a flower opening its petals).

3.1 Building a Vocabulary of Active Moments

When building a large-scale dataset it is important to use an
appropriate class vocabulary that contains a large coverage
and diversity of classes. In order to ensure that we captured
this criteria we began building our vocabulary by using the
4,500 most commonly used verbs from VerbNet [41] (accord-
ing to the word frequencies in the Corpus of Contemporary
American English (COCA) [11]). We then clustered the verbs
according to their conceptual structure and meaning using
the features for each verb from Propbank [28], FrameNet
[5] and OntoNotes [21]. The clusters are sorted according to
the combined frequency of use of each verb member of the
cluster according to COCA. For example, we found a cluster
associated with "grooming" which contained the following
verbs in order of most common to least common "wash-
ing, showering, bathing, soaping, grooming, shampooing,
manicuring, moisturizing, and flossing". Verbs can belong
to multiple clusters due to their different frames of use. For
instance, "washing" also belongs to a group associated with
cleaning, mopping, scrubbing, etc.

Given these clusters, we then iteratively selected the most
common verb from the most common cluster and added it
to our vocabulary. The verb was then removed from all of
its member clusters, and we repeated the process with the
remaining verbs in the set. This method creates a list of verbs
ordered according to not just the frequency of use of the verb,
but also the frequency of its semantic meaning. From this
sorted list of 4,500 verbs we then hand picked the 339 most
common verbs that could be recognized in a 3-second video.

3.2 Collection and Annotation

Once we form our vocabulary of the dataset, we crawl
the Internet and download videos related to each verb
from a variety of different sources 2. This includes parsing
video metadata and crawling search engines to build a list
of candidate videos for each verb in our vocabulary. We
randomly cut a 3-second section of each video and grouped
the cut with the corresponding verb. These verb-video tuples
are sent to Amazon Mechanical Turk for annotation.

Each worker is presented with the video-verb pair and
asked to press a Yes or No key responding if the action is
happening in the scene. The positive responses from the first
round are then sent to a second round of annotation. Each

2. Sources: Youtube (www.youtube.com), Flickr (www.flickr.com),
Vine (www.vine.co), Metacafe (www.metacafe.com), Peeks
(www.peeks.com), Vimeo (www.vimeo.com), VideoBlocks
(www.videoblocks.com), Bing (www.bing.com), Giphy
(www.giphy.com), The Weather Channel (www.weather.com) and
Getty-Images (www.gettyimages.com)

Fig. 2: User interface. An example for our binary annotation
task for the action cooking.

HIT (one assignment for each worker) contains 64 different 3-
second videos that are related to a single verb and 10 ground
truth videos that are used for control. In each HIT, the first 4
questions are used to train the workers on the task and do not
allow them to continue without selecting the correct answer.
Only the results from HITs that earn a 90% or above on the
control videos are included in the dataset. We chose this
binary-classification setup because we have a large number
of verb categories which makes class selection a difficult task
for workers. We run each video in the training set through
annotation at least 3 times and a require a human consensus
of at least 75% to be considered a positive label. For the
validation and test set we increase the minimum number of
rounds of annotation to 4 with a human consensus of at least
85%. We do not set the threshold at 100% to allow for some
videos that have actions that are slightly more difficult to
recognize into the dataset. Figure 2 shows an example of the
annotation task presented to the workers.

3.3 Dataset Statistics

A motivation for this project was to gather a large balanced
and diverse dataset for training models for video under-
standing. Since we pull our videos from over 10 different
sources we are able to include a large breadth of diversity
that would be challenging using a single source. In total, we
have collected over 1,000,000 labelled videos for 339 Moment
classes. The graph on the left of Figure 3 shows the full
distribution across all classes where the average number of
labeled videos per class is 1,757 with a median of 2,775.

To further aid in building a diverse dataset we do not
restrict the active agent in our videos to humans. Many
events such as "walking", "swimming", "jumping", and
"carrying" are not specific to human agents. In addition,
some classes may contain very few videos with human
agents (e.g. "howling" or "flying"). True video understanding
models should be able to recognize the event across agent
classes. With this in mind we decided to build our dataset
to be general across agents and present a new challenge
to the field of video understanding. The middle graph in
Figure 3 shows the distribution of the videos according to
agent type (human, animal, object) for each class. On the
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Fig. 3: Dataset Statistics. Left: Distribution of the number of videos belonging to each category. Middle: Per class distribution
of videos that have humans, animals, or objects as agents completing actions. Right: Per class distribution of videos that
require audio to recognize the class category and videos that can be categorized with only visual information.

Fig. 4: Comparison to Datasets. For each dataset we provide different comparisons. Left: the total number of action labels
in the training set. Middle: the average number of videos per class (some videos can belong to multiple classes).Right: the
coverage of objects and scenes recognized (top 1) by networks trained on Places and Imagenet.

far left (larger human proportion), we have classes such
as "typing", "sketching", and "repairing", while on the far
right (smaller human proportion) we have events such as
"storming", "roaring", and "erupting".

Another feature of the Moments in Time dataset is that
we include sound-dependant classes. We do not restrict our
videos to events that can be seen, if there is a moment that can
only be heard in the video (e.g. "clapping" in the background)
then we still include it. This presents another challenge in
that purely visual models will not be sufficient to completely
solve the dataset. The right graph in Figure 3 shows the
distribution of videos according to whether or not the event
in the video can be seen.

3.4 Dataset Comparisons

In order to highlight the key points of our dataset, we
compare the scale, object-scene coverage, and the object-
scene-action correlations found in Moments in Time to other
large-scale video datasets for action recognition. These in-
clude UCF-101 [44], ActivityNet [9], Kinetics [27], Something-
Something [16], AVA [17], and Charades [42]. Figure 4
compares the total number of action labels used for training
(left) and the average number of videos that belong to each
class in the training set (middle). This increase in scale for
action recognition is beneficial for training large generalizable
systems for machine learning.

Additionally, we compared the coverage of objects and
scenes that can be recognized within the videos. This type
of comparison helps to showcase the visual diversity of our
dataset. To accomplish this, we extract 3 frames from each
video evenly spaced at 25%, 50%, and 75% of the video
duration and run a 50 layer resnet [18] trained on ImageNet
[30] and a 50 layer resnet trained on Places [54] over each
frame and average the prediction results for each video.
We then compare the total number of objects and scenes
recognized (top 1) by the networks in Figure 4 (right). The
graph shows that 100% of the scene categories in Places and
99.9% of the object categories in ImageNet were recognized
in our dataset. The closest dataset to ours in this comparison
is Kinetics which has a recognized coverage of 99.5% of the
scene categories in Places and 96.6% of the object categories
in ImageNet. We should note that we are comparing the
recognized categories from the top 1 prediction of each
network. We have not annotated the scene locations and
objects in each video of each dataset. However, a comparison
of the visual features recognized by each network does still
serve as an informative comparison of visual diversity.

4 EXPERIMENTS

In this section we present the details of our experimental
setup utilized to obtain the reported baseline results.
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Model Modality Top-1 (%) Top-5 (%)
Chance - 0.29 1.47
ResNet50-scratch Spatial 23.65 46.73
ResNet50-Places Spatial 26.44 50.56
ResNet50-ImageNet Spatial 27.16 51.68
TSN-Spatial Spatial 24.11 49.10
BNInception-Flow Temporal 11.60 27.40
ResNet50-DyImg Temporal 15.76 35.69
TSN-Flow Temporal 15.71 34.65
SoundNet Auditory 7.60 18.00
TSN-2stream Spatial+Temporal 25.32 50.10
TRN-Multiscale Spatial+Temporal 28.27 53.87
Ensemble (average) S+T+A 30.40 55.94
Ensemble (SVM) S+T+A 30.42 55.60

TABLE 1: Classification Accuracy: We show Top-1 and Top-5
accuracy of the baseline models on the validation set.

4.1 Experimental Setup

Data. For training and testing models for video classification
on our dataset, we generate a training set of 802,264 videos
with between 500 and 5,000 videos per class for 339 different
Moment classes. We evaluate performance on a validation
set of 33,900 videos which consists of 100 videos for each
of the 339 classes. We additionally withhold a test set of
67,800 videos consisting of 200 videos per class which will be
used to evaluate submissions for a future action recognition
challenge.

Preprocessing. We extract RGB frames from the videos
at 25 fps. Given that the videos are with variable resolution,
we resize the RGB frames to a standard 340x256 pixels. In
the interest of performance, we pre-compute optical flow on
consecutive frames using an off-the-shelf implementation
of TVL1 optical flow algorithm [51] from the OpenCV
toolbox [23]. This formulation allows for discontinuities in
the optical flow field and thus more robust to noise. For
fast computation, we discretize the values of optical flow
fields into integers, clip the displacement with a maximum
absolute value of 15 and scale the range as 0-255. The
x and y displacements fields of every optical flow frame
can then be stored as two grayscale images with reduced
storage consumption. To correct for camera motion, we
subtract the mean vector from each displacement field in
the stack. For video frames, we use random cropping for
data augmentation and we subtract the ImageNet mean from
images.

Evaluation metric. We use the top-1 accuracy and top-5
classification accuracy as the scoring metrics. Top-1 accuracy
indicates the percentage of testing videos for which the top
confident predicted label is correct. Top-5 accuracy indicates
the percentage of the testing videos for which the ground-
truth label is among the top 5 ranked predicted labels. Top-5
accuracy is appropriate for video classification as videos may
contain multiple actions within them (see Figure 5).

4.2 Baselines for Video Classification

Here, we present several baselines for video classification
on the Moments in Time dataset. We show results for three
modalities (spatial, temporal, and auditory), as well as for
recent video classification models such as Temporal Segment
Networks [49] and Temporal Relation Networks [52]. We
further explore combining models to improve recognition

accuracy. The details of the baseline models grouped by
different modalities are listed below.

Spatial modality. We experiment with a 50 layer resnet
[19] network for classification given RGB frames of videos. In
training, the input to the network are randomly selected RGB
frames for each video. In testing, we average the prediction
from 6 equi-distant frames. We train the networks with
weights trained from scratch as ResNet50-scrach, initialized
on Places [55] as ResNet50-Places, and initialized on ImageNet
[30] as ResNet50-ImageNet.

Auditory modality. While many actions can be rec-
ognized visually, sound contains complementary or even
mandatory information for recognition of particular cate-
gories, such as cheering or talking, as can be seen in Figure
3 (right). We use raw waveforms as the input modality and
follow the network architecture from SoundNet [4] with
the output layer changed to predict moment categories. We
finetune a model pre-trained on 2,000,000 unlabeled videos
from Flickr [4] as SoundNet.

Temporal modality. We report results from two temporal
modality models. First, following [43], we compute optical
flow between adjacent frames encoded in Cartesian coordi-
nates as displacements. We use optic flow images by stacking
together 5 consecutive frames to form a 10 channel image (the
x and y displacement channels of optical flow). We use the
BNInception [22] as the base model, by modifying the first
convolutional layer to accept 10 input channels instead of 3
as BNInception-Flow. Second, we compute dynamic images [7]
as a means of spatiotemporal encoding of videos. A dynamic
image summarizes the gist of a video clip in a single image.
Dynamic images represent a video as a ranking function of
its frames using rankSVM [13]. RankSVM uses an implicit
video label - the frame ordering. We use a residual network
[19] with 50 layers as the architecture for training on the
dynamic images as ResNet50-DyImg.

We also train two recent action recognition models:
Temporal Segment Networks (TSN) [49] and Temporal
Relation Networks [52]. Temporal Segment Networks aim
to efficiently capture the long-range temporal structure of
videos using a sparse frame-sampling strategy. The TSN’s
spatial stream TSN-Spatial is fused with an optical flow
stream TSN-Flow via average consensus to form the two
stream TSN TSN-2stream. The base model for each stream is
a BNInception [22] model with three time segments.

Temporal Relation Networks (TRN) [52] are designed to
explicitly learn the temporal dependencies between video
segments that best characterize a particular action. This
“plug-and-play" module can model several short-range and
long-range temporal dependencies simultaneously to classify
actions that unfold at multiple time scales. In this paper, a
TRN with multi-scale relations TRN-Multiscale is trained
on the RGB frames only using InceptionV3 [46] as the
base model. The number of multi-scale relations used in
TRN is 8. Note that we classify the TRN-Multiscale as
spatiotemporal modality because in training it utilizes the
temporal dependency of different frames.

Ensemble. To combine different modalities for action
prediction, we conduct model ensemble over the top per-
forming model of each modality (spatial: ResNet50-ImageNet,
spatiotemporal: TRN-Multiscale, auditory: SoundNet). We try
two ensemble strategies: the first is average ensemble, in
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Fig. 5: Overview of top detections for several single stream models. The ground truth label and top three model predictions
are listed for representative frames of videos.
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Fig. 6: Examples of missed detections: We show examples of videos where the prediction is not in the top-5. Common
failures are often due to background clutter or poor generalization across agents (humans, animals, objects).

which we simply average the predicted class probability from
each models; the second is SVM ensemble: we concatenate
predicted class probabilities from each stream then fit a
multi-class one-versus-all linear SVM to predict the moment
categories (among a vocabulary of 339 verbs). SVM ensemble
enables us to learn a weighted average of the modalities
dependent on the category.

4.3 Baseline Results
Table 1 shows the Top-1 and Top-5 accuracy of the baseline
models on the validation set. The best single model is the
TRN-Multiscale, with a Top-1 accuracy of 28.27% and a Top-5
accuracy of 53.87%. The Ensemble model (average) gets the
Top-5 accuracy as 55.94%.

Figure 5 illustrates some of the high scoring predictions
from the baseline models. This qualitative result suggests
that the models can recognize moments well when the
action is well-framed and close up. However, the model
frequently misfires when the category is fine-grained or there
is background clutter. Figure 6 shows examples where the
ground truth category is not detected in the top-5 predictions
due to either significant background clutter or difficulty in
recognizing actions across agents.

We visualize the prediction given by the model by
generating the heatmaps for some video samples using the
Class Activation Mapping (CAM) [53] in Figure 7. CAM
highlights the most informative image regions relevant to the
prediction. Here we use the top-1 prediction of the ResNet50-
ImageNet model for each individual frame of the given video.

To understand some of the challenges, Figure 8 breaks
down performance by category for different models and
modalities. Categories that perform the best tend to have

clear appearances and lower intra-class variation, for exam-
ple bowling and surfing frequently happen in specific scene
categories. The more difficult categories, such as covering,
slipping, and plugging, tend to have wide spatiotemporal
support as they can happen in most scenes and with most
objects. Recognizing actions uncorrelated with scenes and
objects seems to pose a challenge for video understanding.

Figure 8 also shows the roles that different modalities play
in per category performance. Auditory models have a qual-
tiatively different performance per category versus visual
models, suggesting that sound provides a complementary
signal to vision for recognizing actions in videos. However,
the full ensemble model has per category performance that
is fairly correlated with a single image, spatial model. Given
the relatively low performance on Moments in Time, this
suggests that there is still room to capitalize on temporal
dynamics to better recognize action categories.

Figure 9 shows some of the most common confusions
between categories. Generally, the most common failures are
due to errors in fine-grained recognition, such as confusing
submerging versus swimming, or lack of temporal reasoning,
such as confusing opening versus closing. The confusions
between a single frame model and the full model are qualita-
tively similar, suggesting that temporal reasoning remains a
critical challenge for visual models. The auditory confusions,
however, are qualitatively different, showing that sound is
an important complementary signal for video understanding.
We expect that, to advance performance in this dataset,
models will need a rich understanding of dynamics, fine-
grained recognition, and audio-visual reasoning.
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Fig. 7: Predictions and Attention: We show some predictions (shown with class probability in top left corner) from
ResNet50-ImageNet spatial model on held-out video data and the heatmaps which highlight the informative regions in some
frames. For example, for recognizing the action chewing, the network focuses on the moving mouth.

5 CONCLUSION

We present the Moments in Time Dataset, a large-scale
collection for video understanding, covering a wide class of
dynamic events involving different agents (people, animals,
objects, and natural phenomena), unfolding over three sec-
onds. We report results of several baseline models addressing
separately and jointly three modalities: spatial, temporal and
auditory. This dataset presents a difficult task for the field
of computer vision in that the labels correspond to different
levels of abstraction (a verb like "falling" can apply to many
different agents and scenarios, involving objects of different
categories, see Figure 1). Thus it will serve as a new challenge
to develop models that can appropriately scale to the level of
complexity and abstract reasoning that a human processes
on a daily basis.

Future versions of the dataset will include multi-labels
action description (i.e. more than one action occurs in most
3-second videos, as illustrated in Figure 5), focus on growing
the diversity of agents, and adding temporal transitions
between the actions that agents performed. We also plan
to organize challenges based on the various releases of the
dataset, from general action recognition to more cognitive-
level tasks such as modeling transformations and transfer
learning across different agents and settings. For example,
consider the challenge of training on actions performed solely
by humans and testing on the same actions performed by
animals. Humans are expert with analogies, the ability to
seemingly transfer knowledge between events that have a
partial similarity. At the core of common sense reasoning and
creativity, analogies may occur across modalities, between
different agents (a ball jumping to a person jumping) and
at different levels of abstraction (e.g. opening a door and
opening your hand to welcome someone). The project aims
to produce datasets with a variety of levels of abstraction and

agents (animate and inanimate agents performing similar
actions), to serve as a step-stone towards the development of
learning algorithms that are able to build analogies between
things, imagine and synthesis novel events, and interpret
compositional scenarios.
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